Top-Fragen
Zeitleiste
Chat
Kontext
Trinomial Triangle
Abwandlung des Pascalschen Dreiecks in der Diskreten Mathematik Aus Wikipedia, der freien Enzyklopädie
Remove ads
Remove ads
Das Trinomial Triangle (englisch, etwa Trinomiales Dreieck) ist eine Abwandlung zum Pascalschen Dreieck. Der Unterschied besteht darin, dass ein Eintrag die Summe der drei (statt wie im originalen Pascalschen Dreieck der zwei) darüberstehenden Einträge ist. Bisher hat sich wegen der geringen mathematischen Relevanz kein allgemein anerkannter deutscher Begriff durchsetzen können; ein Beispiel für einen praktisch verwendeten Begriff ist „Pascalsches 3-arithmetisches Dreieck“.[1]
Für den -ten Eintrag in der -ten Zeile hat sich die Bezeichnung
etabliert. Die Zeilen werden dabei mit beginnend gezählt, die Einträge in der -ten Zeile mit beginnend bis . Der mittlere Eintrag hat also Index , und die Symmetrie wird durch die Formel
ausgedrückt.
Remove ads
Eigenschaften
Zusammenfassung
Kontext
Die -te Zeile entspricht den Koeffizienten der Polynomentwicklung der -ten Potenz von , also eines speziellen Trinoms:[2]
oder symmetrisch
- .
Daraus ergibt sich auch die Bezeichnung Trinomialkoeffizienten und die Beziehung zu den Multinomialkoeffizienten:
Des Weiteren sind interessante Folgen in den Diagonalen enthalten, etwa die Dreieckszahlen.
Die Summe der Elemente der -ten Zeile ist .
Die alternierende Summe jeder Zeile ergibt Eins: .
Formal folgen beide Formeln aus der ersten Formel für x=1 und x=-1.
Remove ads
Rekursionsformel
Zusammenfassung
Kontext
Die Trinomialkoeffizienten lassen sich mit folgender Rekursionsformel berechnen:[2]
- ,
- für ,
wobei für und zu setzen ist.
Remove ads
Die mittleren Einträge
Zusammenfassung
Kontext
Die Folge der mittleren Einträge (Folge A002426 in OEIS)
- 1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, …
wurde bereits von Euler untersucht: Sie ist explizit gegeben durch
Die zugehörige erzeugende Funktion ist
Euler bemerkte auch das exemplum memorabile inductionis fallacis (bemerkenswertes Beispiel trügerischer Induktion):
- für
mit der Fibonacci-Folge . Für größere ist die Beziehung jedoch falsch. George Andrews erklärte dies durch die allgemeingültige Identität.[4]
- .
Remove ads
Bedeutung in der Kombinatorik
Zusammenfassung
Kontext
Kartenspiele
In der Kombinatorik gibt der Koeffizient von in der Polynomentwicklung von an, wie viele verschiedene Möglichkeiten es gibt, um ungeordnet Karten aus einem Paket von zwei identischen Kartenspielen je unterschiedlicher Karten auszuwählen.[5] Hat man beispielsweise zwei Kartenspiele mit den Karten A,B,C, so sieht das folgendermaßen aus:
Insbesondere ergibt sich daraus [6] (also gut 287 Millionen) für die Anzahl der unterschiedlichen Hände im Doppelkopf.
Alternativ lässt sich die Zahl dieser Möglichkeit auch berechnen, indem man über die Anzahl der Pärchen in der Hand aufsummiert; dafür gibt es Möglichkeiten und für die verbleibenden Karten gibt es Möglichkeiten[5], sodass sich daraus folgende Beziehung zu den Binomialkoeffizienten ergibt:
- .
Beispielsweise gilt
- 6=.
In obigem Beispiel entspricht das dann für die Auswahl von 2 Karten den 3 Möglichkeiten mit 0 Pärchen (AB, AC, BC) sowie den 3 Möglichkeiten mit einem Pärchen (AA, BB, CC).
Schachmathematik

entspricht auch der Zahl der möglichen Pfade eines Schachkönigs, um in minimaler Zahl von Zügen ein Feld des Schachbretts zu erreichen, das von seinem aktuellen Aufenthaltsort Felder entfernt ist.
Dies gilt nur unter der Bedingung, dass die möglichen Pfade nicht durch den Brettrand eingeschränkt sind.
Remove ads
Literatur
- Leonhard Euler, Observationes analyticae. Novi Commentarii academiae scientiarum Petropolitanae 11 (1767) 124–143 PDF
Einzelnachweise
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads