Top-Fragen
Zeitleiste
Chat
Kontext

Ungleichung von Ottaviani-Skorokhod

Aus Wikipedia, der freien Enzyklopädie

Remove ads

Die Ungleichung von Ottaviani-Skorokhod ist eine stochastische Ungleichung innerhalb des Gebiets der Wahrscheinlichkeitsrechnung, welche auf die beiden Mathematiker Giuseppe Ottaviani und Anatoli Skorokhod zurückgeht. Sie bezieht sich auf endliche Familien von stochastisch unabhängigen reellen Zufallsvariablen und stellt ein nützliches Hilfsmittel für Beweise im Umfeld des Starken Gesetzes der großen Zahlen dar.[1]

Remove ads

Formulierung der Ungleichung

Zusammenfassung
Kontext

Der Darstellung von Heinz Bauer folgend lässt sich die Ungleichung angeben wie folgt:[1]

Gegeben seien ein Wahrscheinlichkeitsraum und darauf endlich viele unabhängige Zufallsvariablen
Sei hierbei für
gesetzt.
Dann ist für jeden Index und für zwei reelle Zahlen und
die Ungleichung
[2]
erfüllt.
Remove ads

Folgerungen: Ein Satz von Lévy und weitere Korollare

Zusammenfassung
Kontext

Mit der Ungleichung von Ottaviani-Skorokhod lassen sich der folgende Satz des französischen Mathematikers Paul Lévy herleiten und einige Korollare herleiten.

Der lévysche Satz besagt:[1]

Für jede unabhängige Folge reeller Zufallsvariablen folgt aus der stochastischen Konvergenz der Reihe   die fast sichere Konvergenz dieser Reihe.

Daraus erhält man folgendes Korollar:

Ist eine unabhängige Folge reeller Zufallsvariablen mit
(1)
(2)
so ist die Reihe fast sicher konvergent.

Aus diesem Korollar gewinnt man dann unter Anwendung des kroneckerschen Lemmas unmittelbar das kolmogoroffsche Kriterium zum Starken Gesetz der großen Zahlen:[3]

Ist eine unabhängige Folge von integrierbaren reellen Zufallsvariablen mit
(*)
so genügt die Folge dem Starken Gesetz der großen Zahlen.
Remove ads

Anmerkungen

  1. Die Ungleichung von Ottaviani-Skorokhod (und auch Abwandlungen derselben) verbinden einige Autoren nur mit dem Namen von Giuseppe Ottaviani und bezeichnen diese als Ungleichung von Ottaviani bzw. als ottavianische Ungleichung (englisch Ottaviani’s inequality). Vielfach wird dabei auch allein der Fall behandelt.[4][5][6]
  2. In dem Hochschultext von Peter Gänssler und Winfried Stute erscheint die Ungleichung (in einer anderen und sogar etwas allgemeineren Fassung) als Skorokhod-Ungleichung.[7]
  3. Die obige Darstellung der Ungleichung, welche unabhängige reelle Zufallsvariablen zugrunde legt, lässt sich in entsprechender Weise auch (etwa) für unabhängige borelmessbare Zufallsvariablen mit Werten in einem separablen Banachraum formulieren. Dabei tritt an die Stelle der obigen Betragsfunktion die Norm des Banachraums.[8]

Literatur

Zusammenfassung
Kontext

Originalarbeiten

  • Nasrollah Etemadi: Maximal inequalities for partial sums of independent random vectors with multi-dimensional time parameters. In: Communications in Statistics. Theory and Methods. Band 20, 1991, S. 3909–3923 (MR1158554).
  • G. Ottaviani: Sulla teoria astratta del calcolo delle probabilità proposita dal Cantelli. In: Giornale dell'Istituto Italiano degli Attuari. Band 10, 1939, S. 10–40.

Monographien

Remove ads

Einzelnachweise und Anmerkungen

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads