Accuracy and precision

Characterization of measurement error / From Wikipedia, the free encyclopedia

Dear Wikiwand AI, let's keep it short by simply answering these key questions:

Can you list the top facts and stats about Accuracy and precision?

Summarize this article for a 10 years old


Accuracy and precision are two measures of observational error. Accuracy is how close a given set of measurements (observations or readings) are to their true value, while precision is how close the measurements are to each other.

In other words, precision is a description of random errors, a measure of statistical variability. Accuracy has two definitions:

  1. More commonly, it is a description of only systematic errors, a measure of statistical bias of a given measure of central tendency; low accuracy causes a difference between a result and a true value; ISO calls this trueness.
  2. Alternatively, the International Organization for Standardization (ISO) defines[1] accuracy as describing a combination of both types of observational error (random and systematic), so high accuracy requires both high precision and high trueness.

In the first, more common definition of "accuracy" above, the concept is independent of "precision", so a particular set of data can be said to be accurate, precise, both, or neither.

In simpler terms, given a statistical sample or set of data points from repeated measurements of the same quantity, the sample or set can be said to be accurate if their average is close to the true value of the quantity being measured, while the set can be said to be precise if their standard deviation is relatively small.