cover image

AlexNet

Convolutional neural network / From Wikipedia, the free encyclopedia

Dear Wikiwand AI, let's keep it short by simply answering these key questions:

Can you list the top facts and stats about AlexNet?

Summarize this article for a 10 years old

SHOW ALL QUESTIONS

AlexNet is the name of a convolutional neural network (CNN) architecture, designed by Alex Krizhevsky in collaboration with Ilya Sutskever and Geoffrey Hinton, who was Krizhevsky's Ph.D. advisor.[1][2]

Comparison_image_neural_networks.svg
Comparison of the LeNet and AlexNet convolution, pooling, and dense layers
(AlexNet image size should be 227×227×3, instead of 224×224×3, so the math will come out right. The original paper said different numbers, but Andrej Karpathy, the former head of computer vision at Tesla, said it should be 227×227×3 (he said Alex didn't describe why he put 224×224×3). The next convolution should be 11×11 with stride 4: 55×55×96 (instead of 54×54×96). It would be calculated, for example, as: [(input width 227 - kernel width 11) / stride 4] + 1 = [(227 - 11) / 4] + 1 = 55. Since the kernel output is the same length as width, its area is 55×55.)
page1-220px-AlexNet_architecture_%28Krizhevsky_et_al%2C_2012%29.pdf.jpg
AlexNet architecture (Krizhevsky et al, 2012).

AlexNet competed in the ImageNet Large Scale Visual Recognition Challenge on September 30, 2012.[3] The network achieved a top-5 error of 15.3%, more than 10.8 percentage points lower than that of the runner up. The original paper's primary result was that the depth of the model was essential for its high performance, which was computationally expensive, but made feasible due to the utilization of graphics processing units (GPUs) during training.[2]