Discrete logarithm

The problem of inverting exponentiation in finite groups / From Wikipedia, the free encyclopedia

Dear Wikiwand AI, let's keep it short, summarize this topic like I'm... Ten years old or a College student

In mathematics, for given real numbers a and b, the logarithm logba is a number x such that bx = a. Analogously, in any group G, powers bk can be defined for all integers k, and the discrete logarithm logba is an integer k such that bk = a. In number theory, the more commonly used term is index: we can write x = indr a (mod m) (read "the index of a to the base r modulo m") for rxa (mod m) if r is a primitive root of m and gcd(a,m) = 1.

Discrete logarithms are quickly computable in a few special cases. However, no efficient method is known for computing them in general. Several important algorithms in public-key cryptography, such as ElGamal base their security on the assumption that the discrete logarithm problem over carefully chosen groups has no efficient solution.[1]