Electron acceptor

Chemical entity capable of accepting electrons / From Wikipedia, the free encyclopedia

Dear Wikiwand AI, let's keep it short by simply answering these key questions:

Can you list the top facts and stats about Electron acceptor?

Summarize this article for a 10 years old


An electron acceptor is a chemical entity that accepts electrons transferred to it from another compound.[1] It is an oxidizing agent that, by virtue of its accepting electrons, is itself reduced in the process. Electron acceptors are sometimes mistakenly called electron receptors.

Typical oxidizing agents undergo permanent chemical alteration through covalent or ionic reaction chemistry, resulting in the complete[clarification needed] and irreversible transfer of one or more electrons. In many chemical circumstances, however, the transfer of electronic charge from an electron donor may be only fractional, meaning an electron is not completely transferred, but results in an electron resonance[clarification needed] between the donor and acceptor. This leads to the formation of charge transfer complexes in which the components largely retain their chemical identities.

The electron accepting power of an acceptor molecule is measured by its electron affinity (A) which is the energy released when filling the lowest unoccupied molecular orbital (LUMO). The energy required to remove one electron from the electron donor is its ionization potential (I). The overall system energy change (ΔE), i.e. the energy gained or lost, for the charge transfer is


In chemistry, a class of electron acceptors that acquire not just one, but a set of two paired electrons that form a covalent bond with an electron donor molecule, is known as a Lewis acid. This phenomenon gives rise to the wide field of Lewis acid-base chemistry.[2] The driving forces for electron donor and acceptor behavior in chemistry is based on the concepts of electropositivity (for donors) and electronegativity (for acceptors) of atomic or molecular entities.