Top Qs
Timeline
Chat
Perspective
Fast Walsh–Hadamard transform
Divide-and-conquer algorithm to compute a Hadamard transform From Wikipedia, the free encyclopedia
Remove ads
Remove ads
In computational mathematics, the Hadamard ordered fast Walsh–Hadamard transform (FWHTh) is an efficient algorithm to compute the Walsh–Hadamard transform (WHT). A naive implementation of the WHT of order would have a computational complexity of O(). The FWHTh requires only additions or subtractions.


The FWHTh is a divide-and-conquer algorithm that recursively breaks down a WHT of size into two smaller WHTs of size . [1] This implementation follows the recursive definition of the Hadamard matrix :
The normalization factors for each stage may be grouped together or even omitted.
The sequency-ordered, also known as Walsh-ordered, fast Walsh–Hadamard transform, FWHTw, is obtained by computing the FWHTh as above, and then rearranging the outputs.
A simple fast nonrecursive implementation of the Walsh–Hadamard transform follows from decomposition of the Hadamard transform matrix as , where A is m-th root of . [2]
Remove ads
Python example code
import math
def fwht(a) -> None:
"""In-place Fast Walsh–Hadamard Transform of array a."""
assert math.log2(len(a)).is_integer(), "length of a is a power of 2"
h = 1
while h < len(a):
# perform FWHT
for i in range(0, len(a), h * 2):
for j in range(i, i + h):
x = a[j]
y = a[j + h]
a[j] = x + y
a[j + h] = x - y
# normalize and increment
a /= math.sqrt(2)
h *= 2
Remove ads
See also
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads