# Levi graph

## From Wikipedia, the free encyclopedia

In combinatorial mathematics, a **Levi graph** or **incidence graph** is a bipartite graph associated with an incidence structure.[1][2] From a collection of points and lines in an incidence geometry or a projective configuration, we form a graph with one vertex per point, one vertex per line, and an edge for every incidence between a point and a line. They are named for Friedrich Wilhelm Levi, who wrote about them in 1942.[1][3]

**Quick facts: Levi graph, Girth...**▼

Levi graph | |
---|---|

Girth | ≥ 6 |

Table of graphs and parameters |

The Levi graph of a system of points and lines usually has girth at least six: Any 4-cycles would correspond to two lines through the same two points. Conversely any bipartite graph with girth at least six can be viewed as the Levi graph of an abstract incidence structure.[1] Levi graphs of configurations are biregular, and every biregular graph with girth at least six can be viewed as the Levi graph of an abstract configuration.[4]

Levi graphs may also be defined for other types of incidence structure, such as the incidences between points and planes in Euclidean space. For every Levi graph, there is an equivalent hypergraph, and vice versa.