Molecular biology

Branch of biology which studies biological activities at molecular level / From Wikipedia, the free encyclopedia

Dear Wikiwand AI, let's keep it short by simply answering these key questions:

Can you list the top facts and stats about Molecular biology?

Summarize this article for a 10 years old


Molecular biology /məˈlɛkjʊlər/ is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions.[1][2][3] The study of chemical and physical structure of biological macromolecules is known as molecular biology.[4]

Molecular biology was first described as an approach focused on the underpinnings of biological phenomena - uncovering the structures of biological molecules as well as their interactions, and how these interactions explain observations of classical biology.[5]

In 1945 the term molecular biology was used by physicist William Astbury. In 1953 Francis Crick, James Watson, Rosalind Franklin, and colleagues working at the Medical Research Council unit, Cavendish laboratory, Cambridge (now the MRC Laboratory of Molecular Biology), made a double helix model of DNA which changed the entire research scenario. They proposed the DNA structure based on previous research done by Rosalind Franklin and Maurice Wilkins. This research then led to finding DNA material in other microorganisms, plants, and animals.[4]

Molecular biology is not simply the study of biological molecules and their interactions; rather, it is also a collection of techniques developed since the field's genesis which have enabled scientists to learn about molecular processes.[6] In this way it has both complemented and improved biochemistry and genetics as methods (of understanding nature) that began before its advent. One notable technique which has revolutionized the field is the polymerase chain reaction (PCR), which was developed in 1983.[6] PCR is a reaction which amplifies small quantities of DNA, and it is used in many applications across scientific disciplines.[7][8]

The central dogma of molecular biology describes the process in which DNA is transcribed into RNA, which is then translated into protein.[2][9]

Molecular biology also plays a critical role in the understanding of structures, functions, and internal controls within individual cells, all of which can be used to efficiently target new drugs, diagnose disease, and better understand cell physiology.[10] Some clinical research and medical therapies arising from molecular biology are covered under gene therapy whereas the use of molecular biology or molecular cell biology in medicine is now referred to as molecular medicine.