# Parity (mathematics)

## Property of being an even or odd number / From Wikipedia, the free encyclopedia

#### Dear Wikiwand AI, let's keep it short by simply answering these key questions:

Can you list the top facts and stats about Parity (mathematics)?

Summarize this article for a 10 year old

*Odd Number*(film).

In mathematics, **parity** is the property of an integer of whether it is **even** or **odd**. An integer is even if it is divisible by 2, and odd if it is not.^{[1]} For example, −4, 0, and 82 are even numbers, while −3, 5, 7, and 21 are odd numbers.

The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers like 1/2 or 4.201. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings.

Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even.^{[2]} Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwise it is even—as the last digit of any even number is 0, 2, 4, 6, or 8. The same idea will work using any even base. In particular, a number expressed in the binary numeral system is odd if its last digit is 1; and it is even if its last digit is 0. In an odd base, the number is even according to the sum of its digits—it is even if and only if the sum of its digits is even.^{[3]}