 Ramanujan's master theorem - Wikiwand

# Ramanujan's master theorem

In mathematics, Ramanujan's master theorem (named after Srinivasa Ramanujan) is a technique that provides an analytic expression for the Mellin transform of an analytic function. Page from Ramanujan's notebook stating his Master theorem.

The result is stated as follows:

If a complex-valued function $f(x)$ has an expansion of the form

$f(x)=\sum _{k=0}^{\infty }{\frac {\varphi (k)}{k!))(-x)^{k}\!$ then the Mellin transform of $f(x)$ is given by

$\int _{0}^{\infty }x^{s-1}f(x)\,dx=\Gamma (s)\varphi (-s)\!$ where $\Gamma (s)\!$ is the gamma function.

It was widely used by Ramanujan to calculate definite integrals and infinite series.

Higher-dimensional versions of this theorem also appear in quantum physics (through Feynman diagrams).

A similar result was also obtained by J. W. L. Glaisher.

## Alternative formalism

An alternative formulation of Ramanujan's master theorem is as follows:

$\int _{0}^{\infty }x^{s-1}({\lambda (0)-x\lambda (1)+x^{2}\lambda (2)-\cdots })\,dx={\frac {\pi }{\sin(\pi s)))\lambda (-s)$ which gets converted to the above form after substituting $\lambda (n)={\frac {\varphi (n)}{\Gamma (1+n)))$ and using the functional equation for the gamma function.

The integral above is convergent for $0<\operatorname {Re} (s)<1$ subject to growth conditions on $\varphi$ .

## Proof

A proof subject to "natural" assumptions (though not the weakest necessary conditions) to Ramanujan's Master theorem was provided by G. H. Hardy employing the residue theorem and the well-known Mellin inversion theorem.

## Application to Bernoulli polynomials

The generating function of the Bernoulli polynomials $B_{k}(x)$ is given by:

${\frac {ze^{xz)){e^{z}-1))=\sum _{k=0}^{\infty }B_{k}(x){\frac {z^{k)){k!))\!$ These polynomials are given in terms of the Hurwitz zeta function:

$\zeta (s,a)=\sum _{n=0}^{\infty }{\frac {1}{(n+a)^{s))}\!$ by $\zeta (1-n,a)=-{\frac {B_{n}(a)}{n))\!$ for $n\geq 1$ . Using the Ramanujan master theorem and the generating function of Bernoulli polynomials one has the following integral representation:

$\int _{0}^{\infty }x^{s-1}\left({\frac {e^{-ax)){1-e^{-x))}-{\frac {1}{x))\right)\,dx=\Gamma (s)\zeta (s,a)\!$ valid for $0<\operatorname {Re} (s)<1\!$ .

## Application to the Gamma function

Weierstrass's definition of the Gamma function

$\Gamma (x)={\frac {e^{-\gamma x)){x))\prod _{n=1}^{\infty }\left(1+{\frac {x}{n))\right)^{-1}e^{x/n}\!$ is equivalent to expression

$\log \Gamma (1+x)=-\gamma x+\sum _{k=2}^{\infty }{\frac {\zeta (k)}{k))(-x)^{k}\!$ where $\zeta (k)$ is the Riemann zeta function.

Then applying Ramanujan master theorem we have:

$\int _{0}^{\infty }x^{s-1}{\frac {\gamma x+\log \Gamma (1+x)}{x^{2))}\,dx={\frac {\pi }{\sin(\pi s))){\frac {\zeta (2-s)}{2-s))\!$ valid for $0 .

Special cases of $s={\frac {1}{2))$ and $s={\frac {3}{4))$ are

$\int _{0}^{\infty }{\frac {\gamma x+\log \Gamma (1+x)}{x^{5/2))}\,dx={\frac {2\pi }{3))\zeta \left({\frac {3}{2))\right)$ $\int _{0}^{\infty }{\frac {\gamma x+\log \Gamma (1+x)}{x^{9/4))}\,dx={\sqrt {2)){\frac {4\pi }{5))\zeta \left({\frac {5}{4))\right)$ 1. ^ Berndt, B. (1985). Ramanujan's Notebooks, Part I. New York: Springer-Verlag.
2. ^ González, Iván; Moll, V. H.; Schmidt, Iván (2011). "A generalized Ramanujan Master Theorem applied to the evaluation of Feynman diagrams". arXiv:1103.0588 [math-ph].
3. ^ Glaisher, J. W. L. (1874). "A new formula in definite integrals". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 48 (315): 53–55. doi:10.1080/14786447408641072.
4. ^ Amdeberhan, Tewodros; Gonzalez, Ivan; Harrison, Marshall; Moll, Victor H.; Straub, Armin (2012). "Ramanujan's Master Theorem". The Ramanujan Journal. 29 (1–3): 103–120. CiteSeerX 10.1.1.232.8448. doi:10.1007/s11139-011-9333-y.
5. ^ Hardy, G. H. (1978). Ramanujan. Twelve Lectures on subjects suggested by his life and work (3rd ed.). New York: Chelsea. ISBN 978-0-8284-0136-4.
6. ^ Espinosa, O.; Moll, V. (2002). "On some definite integrals involving the Hurwitz zeta function. Part 2". The Ramanujan Journal. 6 (4): 449–468. arXiv:math/0107082. doi:10.1023/A:1021171500736.