# Semi-symmetric graph

## Graph that is edge-transitive and regular but not vertex-transitive / From Wikipedia, the free encyclopedia

#### Dear Wikiwand AI, let's keep it short by simply answering these key questions:

Can you list the top facts and stats about Semi-symmetric graph?

Summarize this article for a 10 year old

SHOW ALL QUESTIONS

In the mathematical field of graph theory, a **semi-symmetric graph** is an undirected graph that is edge-transitive and regular, but not vertex-transitive. In other words, a graph is semi-symmetric if each vertex has the same number of incident edges, and there is a symmetry taking any of the graph's edges to any other of its edges, but there is some pair of vertices such that no symmetry maps the first into the second.

**Quick Facts**Graph families defined by their automorphisms, → ...

Graph families defined by their automorphisms | ||||
---|---|---|---|---|

distance-transitive | → | distance-regular | ← | strongly regular |

↓ | ||||

symmetric (arc-transitive) | ← | t-transitive, t ≥ 2 |
skew-symmetric | |

↓ | ||||

_{(if connected)}vertex- and edge-transitive |
→ | edge-transitive and regular | → | edge-transitive |

↓ | ↓ | ↓ | ||

vertex-transitive | → | regular | → | _{(if bipartite)}biregular |

↑ | ||||

Cayley graph | ← | zero-symmetric | asymmetric |

Close