Singularity theory

Mathematical theory / From Wikipedia, the free encyclopedia

Dear Wikiwand AI, let's keep it short by simply answering these key questions:

Can you list the top facts and stats about Singularity theory?

Summarize this article for a 10 year old


In mathematics, singularity theory studies spaces that are almost manifolds, but not quite. A string can serve as an example of a one-dimensional manifold, if one neglects its thickness. A singularity can be made by balling it up, dropping it on the floor, and flattening it. In some places the flat string will cross itself in an approximate "X" shape. The points on the floor where it does this are one kind of singularity, the double point: one bit of the floor corresponds to more than one bit of string. Perhaps the string will also touch itself without crossing, like an underlined "U". This is another kind of singularity. Unlike the double point, it is not stable, in the sense that a small push will lift the bottom of the "U" away from the "underline".

Vladimir Arnold defines the main goal of singularity theory as describing how objects depend on parameters, particularly in cases where the properties undergo sudden change under a small variation of the parameters. These situations are called perestroika (Russian: перестройка), bifurcations or catastrophes. Classifying the types of changes and characterizing sets of parameters which give rise to these changes are some of the main mathematical goals. Singularities can occur in a wide range of mathematical objects, from matrices depending on parameters to wavefronts.[1]

Oops something went wrong: