Top Qs
Timeline
Chat
Perspective

63 knot

Mathematical knot with crossing number 6 From Wikipedia, the free encyclopedia

63 knot
Remove ads

In knot theory, the 63 knot is one of three prime knots with crossing number six, the others being the stevedore knot and the 62 knot. It is alternating, hyperbolic, and fully amphichiral. It can be written as the braid word

[1]
Remove ads

Symmetry

Like the figure-eight knot, the 63 knot is fully amphichiral. This means that the 63 knot is amphichiral,[2] meaning that it is indistinguishable from its own mirror image. In addition, it is also invertible, meaning that orienting the curve in either direction yields the same oriented knot.

Invariants

Summarize
Perspective

The Alexander polynomial of the 63 knot is

Conway polynomial is

Jones polynomial is

and the Kauffman polynomial is

[3]

The 63 knot is a hyperbolic knot, with its complement having a volume of approximately 5.69302.

Remove ads

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads