Top Qs
Timeline
Chat
Perspective
Alessio Zaccone
Italian physicist From Wikipedia, the free encyclopedia
Remove ads
Alessio Zaccone (born 7 September 1981, Alessandria) is an Italian physicist.[1][2]
Remove ads
Career and research
Summarize
Perspective
After a PhD at ETH Zurich,[3] he held faculty positions at Technical University Munich,[4] University of Cambridge[5] and at the Physics Department of the University of Milan.[6] In 2015 he was elected a Fellow of Queens' College, Cambridge.[7]
Zaccone contributed to various areas of condensed matter physics.
He is known for his work on the atomic theory of elasticity and viscoelasticity of amorphous solids,[8][9] in particular for having developed the microscopic theory of elasticity of random sphere packings and elastic random networks.[10] With Konrad Samwer he developed the Krausser–Samwer–Zaccone equation for the viscosity of liquids.[11] With Eugene Terentjev he developed a molecular-level theory of the glass transition based on thermoelasticity, which provides the molecular-level derivation of the Flory–Fox equation for the glass transition temperature of polymers.[12]
He is also known for having developed, in his PhD thesis, the extension of DLVO theory that describes the stability of colloidal systems in fluid dynamic conditions based on a new solution (developed using the method of matched asymptotic expansions) to the Smoluchowski convection–diffusion equation.[13] The predictions of the theory have been extensively verified experimentally by various research groups. Also in his PhD thesis, he developed a formula for the shear modulus of colloidal nanomaterials,[14] which has been confirmed experimentally in great detail.[15] In 2020 he discovered and mathematically predicted that the low-frequency shear modulus of confined liquids scales with inverse cubic power of the confinement size.[16]
In 2017 he was listed as one of the 37 most influential researchers worldwide (with less than 10–12 years of independent career) by the journal Industrial & Engineering Chemistry Research published by the American Chemical Society.[17] In 2020 he was listed among the Emerging Leaders by the Journal of Physics published by the Institute of Physics.[8]
As of October 2023, he has published well over 150 articles in peer-reviewed journals, h-index=40.[1][6]
In 2021 he led a team that theoretically predicted and computationally discovered well-defined topological defects as mediators of plasticity in amorphous solids.[18] This discovery has been later successfully confirmed independently by a research group led by Wei-Hua Wang and Walter Kob.[19]
In January 2022 he proposed an approximate solution for the random close packing problem in 2D and 3D,[20] which received multiple comments online.[21][22][23][24]
Remove ads
Awards and honors
- 2010 – Alexander von Humboldt Fellowship
- 2011 – Oppenheimer Fellowship at Cavendish
- 2011 – ETH Medal Award
- 2014 – Swiss National Science Foundation Professorship[25]
- 2015 – Fellowship of Queens' College, Cambridge[7]
- 2015 – Mößbauer-Professur of the Technical University of Munich[26]
- 2017 – Industrial & Engineering Chemistry Research Class of 2017 Influential Researcher[17][27]
- 2020 – Gauß-Professur of the Göttingen Academy of Sciences and Humanities[9]
- 2020 – Journal of Physics: Materials Emerging Leader[8]
Remove ads
Selected publications
- Gu, S.; Wunder, S.; Lu, Y.; Ballauff, M.; Fenger, R.; Rademann, K.; Jaquet, B.; Zaccone, A. (2014), "Kinetic Analysis of the Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles", Journal of Physical Chemistry C, 118 (32): 18618–18625, doi:10.1021/jp5060606.
- Zaccone, A.; Scossa-Romano, E. (2011), "Approximate analytical description of the nonaffine response of amorphous solids.", Physical Review B, 83 (18): 184205, arXiv:1102.0162, Bibcode:2011PhRvB..83r4205Z, doi:10.1103/PhysRevB.83.184205, S2CID 119256092.
- Zaccone, A.; Terentjev, E. (2013), "Disorder-Assisted Melting and the Glass Transition in Amorphous Solids.", Physical Review Letters, 110 (17): 178002, arXiv:1212.2020, Bibcode:2013PhRvL.110q8002Z, doi:10.1103/PhysRevLett.110.178002, PMID 23679782, S2CID 15600577.
- Krausser, J.; Samwer, K. H.; Zaccone, A. (2015), "Interatomic repulsion softness directly controls the fragility of supercooled metallic melts.", Proceedings of the National Academy of Sciences of the USA, 112 (45): 13762–7, arXiv:1510.08117, Bibcode:2015PNAS..11213762K, doi:10.1073/pnas.1503741112, PMC 4653154, PMID 26504208.
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads