Assouad dimension
From Wikipedia, the free encyclopedia
In mathematics — specifically, in fractal geometry — the Assouad dimension is a definition of fractal dimension for subsets of a metric space. It was introduced by Patrice Assouad in his 1977 PhD thesis and later published in 1979,[1] although the same notion had been studied in 1928 by Georges Bouligand.[2] As well as being used to study fractals, the Assouad dimension has also been used to study quasiconformal mappings and embeddability problems.

Definition
Summarize
Perspective
The Assouad dimension of , is the infimum of all such that is -homogeneous for some .[3]
Let be a metric space, and let E be a non-empty subset of X. For r > 0, let denote the least number of metric open balls of radius less than or equal to r with which it is possible to cover the set E. The Assouad dimension of E is defined to be the infimal for which there exist positive constants C and so that, whenever the following bound holds:
The intuition underlying this definition is that, for a set E with "ordinary" integer dimension n, the number of small balls of radius r needed to cover the intersection of a larger ball of radius R with E will scale like (R/r)n.
Relationships to other notions of dimension
- The Assouad dimension of a metric space is always greater than or equal to its Assouad–Nagata dimension.[4]
- The Assouad dimension of a metric space is always greater than or equal to its upper box dimension, which in turn is greater than or equal to the Hausdorff dimension.[5]
- The Lebesgue covering dimension of a metrizable space X is the minimal Assouad dimension of any metric on X. In particular, for every metrizable space there is a metric for which the Assouad dimension is equal to the Lebesgue covering dimension.[5]
References
Further reading
Wikiwand - on
Seamless Wikipedia browsing. On steroids.