Top Qs
Timeline
Chat
Perspective

Auslander–Buchsbaum formula

From Wikipedia, the free encyclopedia

Remove ads
Remove ads

In commutative algebra, the Auslander–Buchsbaum formula, introduced by Auslander and Buchsbaum (1957,theorem 3.7), states that if R is a commutative Noetherian local ring and M is a non-zero finitely generated R-module of finite projective dimension, then:

Here pd stands for the projective dimension of a module, and depth for the depth of a module.

Remove ads

Applications

The Auslander–Buchsbaum theorem implies that a Noetherian local ring is regular if, and only if, it has finite global dimension. In turn this implies that the localization of a regular local ring is regular.

If A is a local finitely generated R-algebra (over a regular local ring R), then the Auslander–Buchsbaum formula implies that A is Cohen–Macaulay if, and only if, pdRA = codimRA.

References

  • Auslander, Maurice; Buchsbaum, David A. (1957), "Homological dimension in local rings", Transactions of the American Mathematical Society, 85 (2): 390–405, doi:10.2307/1992937, ISSN 0002-9947, JSTOR 1992937, MR 0086822
  • Chapter 19 of Eisenbud, David (1995), Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Berlin, New York: Springer-Verlag, ISBN 978-0-387-94269-8, MR 1322960


Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads