Axiom of countability

Index of articles associated with the same name From Wikipedia, the free encyclopedia

In mathematics, an axiom of countability is a property of certain mathematical objects that asserts the existence of a countable set with certain properties. Without such an axiom, such a set might not provably exist.

Important examples

Important countability axioms for topological spaces include:[1]

Relationships with each other

These axioms are related to each other in the following ways:

  • Every first-countable space is sequential.
  • Every second-countable space is first countable, separable, and Lindelöf.
  • Every σ-compact space is Lindelöf.
  • Every metric space is first countable.
  • For metric spaces, second-countability, separability, and the Lindelöf property are all equivalent.

Other examples of mathematical objects obeying axioms of countability include sigma-finite measure spaces, and lattices of countable type.

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.