Top Qs
Timeline
Chat
Perspective
Brennan conjecture
From Wikipedia, the free encyclopedia
Remove ads
Remove ads
In mathematics, specifically complex analysis, the Brennan conjecture is a conjecture estimating (under specified conditions) the integral powers of the moduli of the derivatives of conformal maps into the open unit disk. The conjecture was formulated by James E. Brennan in 1978.[1][2][3]
Let W be a simply connected open subset of with at least two boundary points in the extended complex plane. Let be a conformal map of W onto the open unit disk. The Brennan conjecture states that whenever . Brennan proved the result when for some constant .[1] Bertilsson proved in 1999 that the result holds when , but the full result remains open.[4][5]
Remove ads
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads