Top Qs
Timeline
Chat
Perspective
Browder–Minty theorem
From Wikipedia, the free encyclopedia
Remove ads
In mathematics, the Browder–Minty theorem (sometimes called the Minty–Browder theorem) states that a bounded, continuous, coercive and monotone function T from a real, separable reflexive Banach space X into its continuous dual space X∗ is automatically surjective. That is, for each continuous linear functional g ∈ X∗, there exists a solution u ∈ X of the equation T(u) = g. (Note that T itself is not required to be a linear map.)
The theorem is named in honor of Felix Browder and George J. Minty, who independently proved it.[1]
Remove ads
See also
- Pseudo-monotone operator; pseudo-monotone operators obey a near-exact analogue of the Browder–Minty theorem.
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads