Top Qs
Timeline
Chat
Perspective
Brownian motion and Riemann zeta function
From Wikipedia, the free encyclopedia
Remove ads
In mathematics, the Brownian motion and the Riemann zeta function are two central objects of study in mathematics originating from different fields - probability theory and analytic number theory - that have mathematical connections between them. The relationships between stochastic processes derived from the Brownian motion and the Riemann zeta function show in a sense inuitively the stochastic behaviour underlying the Riemann zeta function. A representation of the Riemann zeta function in terms of stochastic processes is called a stochastic representation.
Remove ads
Brownian Motion and the Riemann Zeta Function
Summarize
Perspective
Let denote the Riemann zeta function and the gamma function, then the Riemann xi function is defined as
satisfying the functional equation
It turns out that describes the moments of a probability distribution [1]
Brownian Bridge and Riemann Zeta Function
In 1987 Marc Yor and Philippe Biane proved that the random variable defined as the difference between the maximum and minimum of a Brownian bridge describes the same distribution. A Brownian bridge is a one-dimensional Brownian motion conditioned on .[2] They showed that
is a solution for the moment equation
However, this is not the only process that follows this distribution.
Bessel Process and Riemann Zeta Function
A Bessel process of order is the Euclidean norm of a -dimensional Brownian motion. The process is defined as
Define the hitting time and let be an independent hitting time of another process. Define the random variable
then we have
Distribution
Let be the Radon–Nikodym density of the distribution , then the density satisfies the equation[4]
for the theta function[1]
An alternative parametrization yields[3]
with explicit form
where and
Remove ads
Bibliography
- Roger Mansuy and Marc Yor (2008). Aspects of Brownian Motion. Universitext. Springer, Berlin, Heidelberg. doi:10.1007/978-3-540-49966-4. ISBN 978-3-540-22347-4.
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads