Top Qs
Timeline
Chat
Perspective

Acetonitrile

Organic compound (CH3–C≡N); simplest organic nitrile From Wikipedia, the free encyclopedia

Remove ads

Acetonitrile, often abbreviated MeCN (methyl cyanide), is the chemical compound with the formula CH3CN and structure H3C−C≡N. This colourless liquid is the simplest organic nitrile (hydrogen cyanide is a simpler nitrile, but the cyanide anion is not classed as organic). It is produced mainly as a byproduct of acrylonitrile manufacture. It is used as a polar aprotic solvent in organic synthesis and in the purification of butadiene.[7] The N≡C−C skeleton is linear with a short C≡N distance of 1.16 Å.[8]

Quick facts Names, Identifiers ...

Acetonitrile was first prepared in 1847 by the French chemist Jean-Baptiste Dumas.[9]

Remove ads

Applications

Summarize
Perspective

Acetonitrile is used mainly as a solvent in the purification of butadiene in refineries. Specifically, acetonitrile is fed into the top of a distillation column filled with hydrocarbons including butadiene, and as the acetonitrile falls down through the column, it absorbs the butadiene which is then sent from the bottom of the tower to a second separating tower. Heat is then employed in the separating tower to separate the butadiene.[citation needed]

In the laboratory, it is used as a medium-polarity non-protic solvent that is miscible with water and a range of organic solvents, but not saturated hydrocarbons. It has a convenient range of temperatures at which it is a liquid, and dissolves a wide range of ionic and nonpolar compounds and is useful as a mobile phase in HPLC and LC–MS.[citation needed]

It is widely used in battery applications because of its relatively high dielectric constant and ability to dissolve electrolytes. For similar reasons, it is a popular solvent in cyclic voltammetry.[citation needed]

Its ultraviolet transparency UV cutoff, low viscosity and low chemical reactivity make it a popular choice for high-performance liquid chromatography (HPLC).[citation needed]

Acetonitrile plays a significant role as the dominant solvent used in oligonucleotide synthesis from nucleoside phosphoramidites.[citation needed]

Industrially, it is used as a solvent for the manufacture of pharmaceuticals and photographic film.[10]

Organic synthesis

Acetonitrile is a common two-carbon building block in organic synthesis of many useful chemicals, including acetamidine hydrochloride, thiamine, and 1-naphthaleneacetic acid, along with more complex nitriles.[11][12] Its reaction with cyanogen chloride affords malononitrile.[7]

As an electron pair donor

Acetonitrile has a free electron pair at the nitrogen atom, which can form many transition metal nitrile complexes. For example, bis(acetonitrile)palladium dichloride is prepared by heating a suspension of palladium chloride in acetonitrile:[13]

PdCl2 + 2 CH3CN → PdCl2(CH3CN)2

A related complex is tetrakis(acetonitrile)copper(I) hexafluorophosphate [Cu(CH3CN)4]+. The CH3CN ligands in these complexes are rapidly displaced.[citation needed]

It also forms Lewis adducts with group 13 Lewis acids like boron trifluoride.[14] In superacids, it is possible to protonate acetonitrile.[15]

Remove ads

Production

Acetonitrile is a byproduct from the manufacture of acrylonitrile by catalytic ammoxidation of propylene. Most is combusted to support the intended process but an estimated several thousand tons are retained for the above-mentioned applications.[16] Production trends for acetonitrile thus generally follow those of acrylonitrile. In 1992, 14,700 tonnes (16,200 short tons) of acetonitrile were produced in the US.[citation needed]

Remove ads

Safety

Summarize
Perspective

Toxicity

Acetonitrile has only modest toxicity in small doses.[11][17] It can be metabolised to produce hydrogen cyanide, which is the source of the observed toxic effects.[10][18][19] Generally the onset of toxic effects is delayed, due to the time required for the body to metabolize acetonitrile to cyanide (generally about 2–12 hours).[11]

Cases of acetonitrile poisoning in humans are rare but not unknown by inhalation and ingestion.[18] The symptoms, which do not usually appear for several hours after the exposure, include breathing difficulties, slow pulse rate, nausea, and vomiting. Convulsions and coma can occur in serious cases, followed by death from respiratory failure. The treatment is as for cyanide poisoning, with oxygen, sodium nitrite, and sodium thiosulfate among the most commonly used emergency treatments.[18]

It has been used in a formulation for removal of sculptured fingernails. At least two cases have been reported of accidental poisoning of young children by acetonitrile-based sculptured nail remover, one of which was fatal.[20] Acetone and ethyl acetate are often preferred as safer for domestic use, and acetonitrile has been banned in cosmetic products in the European Economic Area since March 2000.[21][importance?]

Metabolism and excretion

More information Compound, Cyanide, concentration in brain (μg/kg) ...

In common with other nitriles, acetonitrile can be metabolised in microsomes, especially in the liver, to produce hydrogen cyanide, as was first shown by Pozzani et al. in 1959.[23] The first step in this pathway is the oxidation of acetonitrile to glycolonitrile by an NADPH-dependent cytochrome P450 monooxygenase. The glycolonitrile then undergoes a spontaneous decomposition to give hydrogen cyanide and formaldehyde.[17][18] Formaldehyde, a toxin and a carcinogen on its own, is further oxidized to formic acid, which is another source of toxicity.

The metabolism of acetonitrile is much slower than that of other nitriles, which accounts for its relatively low toxicity. Hence, one hour after administration of a potentially lethal dose, the concentration of cyanide in the rat brain was 1/20 that for a propionitrile dose 60 times lower (see table).[22]

The relatively slow metabolism of acetonitrile to hydrogen cyanide allows more of the cyanide produced to be detoxified within the body to thiocyanate (the rhodanese pathway). It also allows more acetonitrile to be excreted unchanged before it is metabolised. The main pathways of excretion are by exhalation and in the urine.[17][18][19]

Remove ads

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads