Monooxygenase

Protein family From Wikipedia, the free encyclopedia

Monooxygenase

Monooxygenases are enzymes that incorporate one hydroxyl group (−OH) into substrates in many metabolic pathways. In this reaction, the two atoms of dioxygen are reduced to one hydroxyl group and one H2O molecule by the concomitant oxidation of NAD(P)H.[2][3] One important subset of the monooxygenases, the cytochrome P450 omega hydroxylases, is used by cells to metabolize arachidonic acid (i.e. eicosatetraenoic acid) to the cell signaling molecules, 20-hydroxyeicosatetraenoic acid or to reduce or totally inactivate the activate signaling molecules for example by hydroxylating leukotriene B4 to 20-hydroxy-leukotriene B5, 5-hydroxyeicosatetraenoic acid to 5,20-dihydroxyeicosatetraenoic acid, 5-oxo-eicosatetraenoic acid to 5-oxo-20-hydroxyeicosatetraenoic acid, 12-hydroxyeicosatetraenoic acid to 12,20-dihydroxyeicosatetraenoic acid, and epoxyeicosatrienoic acids to 20-hydroxy-epoxyeicosatrienoic acids.

Quick Facts Identifiers, Symbol ...
Monooxygenase
Thumb
Structure of the TetX monooxygenase in complex with the substrate 7-Iodtetracycline.[1]
Identifiers
SymbolFAD_binding_3
PfamPF01494
InterProIPR002938
SCOP22phh / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
Close

Classification

They are classified as oxidoreductase enzymes that catalyze an electron transfer.

2XDO 2XYO 2Y6R

Human proteins containing this domain

COQ6; CYP450; MICAL1; MICAL2; MICAL2PV1; MICAL2PV2; MICAL3;

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.