Loading AI tools
Special types of subgroups encountered in group theory From Wikipedia, the free encyclopedia
In mathematics, especially group theory, the centralizer (also called commutant[1][2]) of a subset S in a group G is the set of elements of G that commute with every element of S, or equivalently, the set of elements such that conjugation by leaves each element of S fixed. The normalizer of S in G is the set of elements of G that satisfy the weaker condition of leaving the set fixed under conjugation. The centralizer and normalizer of S are subgroups of G. Many techniques in group theory are based on studying the centralizers and normalizers of suitable subsets S.
Suitably formulated, the definitions also apply to semigroups.
In ring theory, the centralizer of a subset of a ring is defined with respect to the multiplication of the ring (a semigroup operation). The centralizer of a subset of a ring R is a subring of R. This article also deals with centralizers and normalizers in a Lie algebra.
The idealizer in a semigroup or ring is another construction that is in the same vein as the centralizer and normalizer.
The centralizer of a subset S of group (or semigroup) G is defined as[3]
where only the first definition applies to semigroups. If there is no ambiguity about the group in question, the G can be suppressed from the notation. When S = {a} is a singleton set, we write CG(a) instead of CG({a}). Another less common notation for the centralizer is Z(a), which parallels the notation for the center. With this latter notation, one must be careful to avoid confusion between the center of a group G, Z(G), and the centralizer of an element g in G, Z(g).
The normalizer of S in the group (or semigroup) G is defined as
where again only the first definition applies to semigroups. If the set is a subgroup of , then the normalizer is the largest subgroup where is a normal subgroup of . The definitions of centralizer and normalizer are similar but not identical. If g is in the centralizer of S and s is in S, then it must be that gs = sg, but if g is in the normalizer, then gs = tg for some t in S, with t possibly different from s. That is, elements of the centralizer of S must commute pointwise with S, but elements of the normalizer of S need only commute with S as a set. The same notational conventions mentioned above for centralizers also apply to normalizers. The normalizer should not be confused with the normal closure.
Clearly and both are subgroups of .
If R is a ring or an algebra over a field, and S is a subset of R, then the centralizer of S is exactly as defined for groups, with R in the place of G.
If is a Lie algebra (or Lie ring) with Lie product [x, y], then the centralizer of a subset S of is defined to be[4]
The definition of centralizers for Lie rings is linked to the definition for rings in the following way. If R is an associative ring, then R can be given the bracket product [x, y] = xy − yx. Of course then xy = yx if and only if [x, y] = 0. If we denote the set R with the bracket product as LR, then clearly the ring centralizer of S in R is equal to the Lie ring centralizer of S in LR.
The normalizer of a subset S of a Lie algebra (or Lie ring) is given by[4]
While this is the standard usage of the term "normalizer" in Lie algebra, this construction is actually the idealizer of the set S in . If S is an additive subgroup of , then is the largest Lie subring (or Lie subalgebra, as the case may be) in which S is a Lie ideal.[5]
Consider the group
Take a subset H of the group G:
Note that [1, 2, 3] is the identity permutation in G and retains the order of each element and [1, 3, 2] is the permutation that fixes the first element and swaps the second and third element.
The normalizer of H with respect to the group G are all elements of G that yield the set H (potentially permuted) when the element conjugates H. Working out the example for each element of G:
Therefore, the Normalizer(H) with respect to G is since both these group elements preserve the set H under conjugation.
The centralizer of the group G is the set of elements that leave each element of H unchanged by conjugation; that is, the set of elements that commutes with every element in H. It's clear in this example that the only such element in S3 is H itself ([1, 2, 3], [1, 3, 2]).
Let denote the centralizer of in the semigroup ; i.e. Then forms a subsemigroup and ; i.e. a commutant is its own bicommutant.
Source:[6]
Source:[4]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.