Clean ring
From Wikipedia, the free encyclopedia
In mathematics, a clean ring is a ring in which every element can be written as the sum of a unit and an idempotent. A ring is a local ring if and only if it is clean and has no idempotents other than 0 and 1. The endomorphism ring of a continuous module is a clean ring.[1] Every clean ring is an exchange ring.[2] A matrix ring over a clean ring is itself clean.[3]
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.