Vertical launching system
Modern system for holding and firing missiles on naval vessels From Wikipedia, the free encyclopedia
Modern system for holding and firing missiles on naval vessels From Wikipedia, the free encyclopedia
A vertical launching system (VLS) is an advanced system for holding and firing missiles on mobile naval platforms, such as surface ships and submarines. Each vertical launch system consists of a number of cells, which can hold one or more missiles ready for firing. Typically, each cell can hold a number of different types of missiles, allowing the ship flexibility to load the best set for any given mission. Further, when new missiles are developed, they are typically fitted to the existing vertical launch systems of that nation, allowing existing ships to use new types of missiles without expensive rework. When the command is given, the missile flies straight up far enough to clear the cell and the ship, then turns onto the desired course.
This article needs additional citations for verification. (January 2017) |
A VLS allows surface combatants to have a greater number of weapons ready for firing at any given time compared to older launching systems such as the Mark 13 single-arm and Mark 26 twin-arm launchers, which were fed from behind by a magazine below the main deck. In addition to greater firepower, VLS is much more damage tolerant and reliable than the previous systems and has a lower radar cross-section (RCS). The U.S. Navy now relies exclusively on VLS for its guided missile destroyers and cruisers.
The most widespread VLS in the world is the Mark 41, developed by the United States Navy. More than 11,000 Mark 41 VLS missile cells have been delivered, or are on order, for use on 186 ships across 19 ship classes, in 11 navies around the world. This system currently serves with the US Navy as well as the Australian, Danish, Dutch, German, Japanese, Norwegian, South Korean, Spanish, and Turkish navies, while others like the Greek Navy preferred the similar Mark 48 system.[1]
The 3S-14 VLS was developed in Russia and is used in sea-based as well as land-based TEL systems such as the S-400 missile system.[citation needed]
The advanced Mark 57 VLS is used on the Zumwalt-class destroyer. The older Mark 13 and Mark 26 systems remain in service on ships that were sold to other countries such as Taiwan and Poland.
When installed on an SSN (nuclear-powered attack submarine), a VLS allows a greater number and variety of weapons to be deployed, compared with using only torpedo tubes.
A vertical launch system can be either hot launch, where the missile ignites in the cell, or cold launch, where the missile is expelled by gas produced by a gas generator which is not part of the missile itself, and then the missile ignites. "Cold" means relatively cold compared with rocket engine exhaust. A hot launch system does not require an ejection mechanism but does require some way of disposing of the missile's exhaust and heat as it departs the cell. If the missile ignites in a cell without an ejection mechanism, the cell must withstand the tremendous heat generated without igniting missiles in adjacent cells.
An advantage of a hot-launch system is that the missile propels itself out of the launching cell using its own engine, which eliminates the need for a separate system to eject the missile from the launching tube. This potentially makes a hot-launch system relatively light, small, and economical to develop and produce, particularly when designed around smaller missiles. A potential disadvantage is that a malfunctioning missile could destroy the launch tube. American surface-ship VLSs have missile cells arranged in a grid with one lid per cell and are "hot launch" systems. The engine ignites within the cell during the launch and so requires a way of venting rocket exhaust. France, Italy and Britain use a similar hot-launching Sylver system in PAAMS.
The advantage of the cold-launch system is in its safety: if a missile engine malfunctions during launch, the cold-launch system can eject the missile, reducing or eliminating the threat. For this reason, Russian VLSs are often designed with a slant so that a malfunctioning missile will land in the water instead of on the ship's deck. As missile size grows, the benefits of ejection launching increase. Above a certain size, a missile booster cannot be safely ignited within the confines of a ship's hull. Most modern ICBMs and SLBMs are cold-launched. Russia produces both grid systems and a revolver arrangement with more than one missile per lid for its cold launch system. Russia also uses a cold launch system for some of its vertical launch missile systems, e.g., the Tor missile system.
The UK's Common Anti-Air Modular Missile (CAMM) family of missiles utilises a similar cold-launching system, referred to as soft-vertical-launch, and actively markets the advantages of the system. Soft-launch provides the missile with a reduce interception rate allowing for shorter ranged engagements, reduces the IR signature of the ship and the obscurant of visibility by rendering the ship in efflux for several minutes; and most notably, the lack of hot efflux and reduced stress on the ship's structure allows for a much greater choice of launch systems, such as the lighter Mushroom Farm launcher whilst also still enabling installation into the heavier Mark 41 in a quad-pack or dual-packed configuration (4 or 2 missiles per cell) for a costly, but more space efficient option.[2][3][4][5]
Some warships of China's People's Liberation Army Navy use a concentric canister launch (CCL) system that can launch using both hot and cold methods in the cell module, onboard the Type 052D destroyer and the Type 055 destroyer.[6] The universal launch system is offered for export.[7]
Older Chinese ships use single launch system: Type 052C destroyers use a cold launch system, while Type 054A frigates use a hot launch system.[8]
Transporter erector launchers are wheeled or tracked land vehicles for the launch of surface-to-air and surface-to-surface missiles. In most systems the missiles are transported in a horizontal out-of-battery configuration: in order to fire, the vehicle must stop and the transport/launch tube must be raised to the vertical before firing.
BAE Systems has filed patents relating to the use of Vertical Launch missiles from modified passenger aircraft.[9]
In 2021, the Centre for Military Studies published the total number of VLS cells in use with fourteen NATO navies. The results are displayed below.
Country | Ship classes and approx. number of VLS cells | Total | Strike Length VLS cells for Sea-Launched Cruise Missiles (SLCM) |
---|---|---|---|
United States |
|
8,646 | 8,700+ arsenal of SLCM / Not included are VLS and BFM on submarines. |
Europe total | - | 2,392 | 688 |
United Kingdom |
|
672 | - |
France |
|
384 | 6 × 16 = 96 SLCM deployed on Aquitaine-class |
Denmark |
|
240 | 3 x 32 = 96 / No SLCM |
Spain | 240 | 5 × 48 = 240 / No SLCM | |
Italy |
|
224 | No SLCM |
Canada |
|
192 | - |
Netherlands |
|
192 | 4 × 40 = 160 / No SLCM |
Germany |
|
160 | 3 × 32 = 96 / No SLCM |
Turkey |
|
144 | - |
Greece |
|
128 | - |
Norway |
|
40 | - |
Belgium |
|
32 | - |
Portugal |
|
32 | - |
Bulgaria |
|
16 | - |
Note: The above table does not include NATO navies which do not possess vertical launching systems, namely Albania, Croatia, Estonia, Iceland, Latvia, Lithuania, North Macedonia, Poland, Romania and Slovenia.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.