Commutative magma
From Wikipedia, the free encyclopedia
In mathematics, there exist magmas that are commutative but not associative. A simple example of such a magma may be derived from the children's game of rock, paper, scissors. Such magmas give rise to non-associative algebras.
A magma which is both commutative and associative is a commutative semigroup.
Example: rock, paper, scissors
Summarize
Perspective
In the game of rock paper scissors, let , standing for the "rock", "paper" and "scissors" gestures respectively, and consider the binary operation derived from the rules of the game as follows:[1]
- For all :
- If and beats in the game, then
- I.e. every is idempotent.
- So that for example:
- "paper beats rock";
- "scissors tie with scissors".
This results in the Cayley table:[1]
By definition, the magma is commutative, but it is also non-associative,[2] as shown by:
but
i.e.
It is the simplest non-associative magma that is conservative, in the sense that the result of any magma operation is one of the two values given as arguments to the operation.[2]
Applications
The arithmetic mean, and generalized means of numbers or of higher-dimensional quantities, such as Frechet means, are often commutative but non-associative.[3]
Commutative but non-associative magmas may be used to analyze genetic recombination.[4]
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.