Top Qs
Timeline
Chat
Perspective
Condon model
Physical model for chirality From Wikipedia, the free encyclopedia
Remove ads
In optics and materials science, Condon model is a mathematical formula for the frequency dependence of the chirality parameter of bi-isotropic or bi-anisotropic media. It was reported by Edward Condon, William Altar and Henry Eyring in 1937 in its definitive form,[1][2] with its earlier forms being introduced by Max Born, Heinrich Gerhard Kuhn and Léon Rosenfeld, among others.[3]

Remove ads
Mathematical formulation
Summarize
Perspective
Electric and magnetic constitutive relations for a dispersive and reciprocal chiral material are written as:[4]
where and are the frequency-dependent permittivity and magnetic susceptibility. denotes the chirality parameter for magnetoelectric coupling. Using a quantum mechanical treatment of molecular transitions that facilitate chiral behavior, Condon et al. arrives at a single oscillator oscillator expression for the chirality parameter, known as "the one‐electron rotatory power":[1][2][4]
where
- is the angular resonant frequency of the molecular transition.
- is the damping term.
- is the rotational strength of the molecular transition.
Alternatively, an expression with multiple oscillators can be used to denote multiple molecular transition between the states to :[5]
Under passivity constraints, imaginary parts of the complex Condon expression and the other constitutive paremeters obey the inequality:[4]
where is the speed of light in vacuum. The model is often approximated with a single-pole oscillator whose resonance lies far away from other molecular transitions. The presence of angular frequency () term in the numerator suggests the absence of chirality in the static limit.[4] Since the model is causal and thus obeys the Kramers–Kronig relations,[6] it is used in the time-domain analytical and numerical modeling of wave propagation in chiral media.[7][8][9][10]
Condon model parameters of chiral materials such as glucose solutions and metamaterials can be retrieved from experimental measurements of optical rotatory dispersion[6] and electromagnetic simulation data.[11]
Remove ads
See also
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads