Top Qs
Timeline
Chat
Perspective

Contracted Bianchi identities

Identities in general relativity From Wikipedia, the free encyclopedia

Remove ads

In general relativity and tensor calculus, the contracted Bianchi identities are:[1]

where is the Ricci tensor, the scalar curvature, and indicates covariant differentiation.

These identities are named after Luigi Bianchi, although they had been already derived by Aurel Voss in 1880.[2] In the Einstein field equations, the contracted Bianchi identity ensures consistency with the vanishing divergence of the matter stress–energy tensor.

Remove ads

Proof

Summarize
Perspective

Start with the Bianchi identity[3]

Contract both sides of the above equation with a pair of metric tensors:

The first term on the left contracts to yield a Ricci scalar, while the third term contracts to yield a mixed Ricci tensor,

The last two terms are the same (changing dummy index n to m) and can be combined into a single term which shall be moved to the right,

which is the same as

Swapping the index labels l and m on the left side yields

Remove ads

See also

Notes

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads