Top Qs
Timeline
Chat
Perspective

Contraction morphism

From Wikipedia, the free encyclopedia

Remove ads
Remove ads

In algebraic geometry, a contraction morphism is a surjective projective morphism between normal projective varieties (or projective schemes) such that or, equivalently, the geometric fibers are all connected (Zariski's connectedness theorem). It is also commonly called an algebraic fiber space, as it is an analog of a fiber space in algebraic topology.

By the Stein factorization, any surjective projective morphism is a contraction morphism followed by a finite morphism.

Examples include ruled surfaces and Mori fiber spaces.

Remove ads

Birational perspective

Summarize
Perspective

The following perspective is crucial in birational geometry (in particular in Mori's minimal model program).

Let be a projective variety and the closure of the span of irreducible curves on in = the real vector space of numerical equivalence classes of real 1-cycles on . Given a face of , the contraction morphism associated to F, if it exists, is a contraction morphism to some projective variety such that for each irreducible curve , is a point if and only if .[1] The basic question is which face gives rise to such a contraction morphism (cf. cone theorem).

Remove ads

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads