Convergence group

From Wikipedia, the free encyclopedia

In mathematics, a convergence group or a discrete convergence group is a group acting by homeomorphisms on a compact metrizable space in a way that generalizes the properties of the action of Kleinian group by Möbius transformations on the ideal boundary of the hyperbolic 3-space . The notion of a convergence group was introduced by Gehring and Martin (1987) [1] and has since found wide applications in geometric topology, quasiconformal analysis, and geometric group theory.

Formal definition

Summarize
Perspective

Let be a group acting by homeomorphisms on a compact metrizable space . This action is called a convergence action or a discrete convergence action (and then is called a convergence group or a discrete convergence group for this action) if for every infinite distinct sequence of elements there exist a subsequence and points such that the maps converge uniformly on compact subsets to the constant map sending to . Here converging uniformly on compact subsets means that for every open neighborhood of in and every compact there exists an index such that for every . Note that the "poles" associated with the subsequence are not required to be distinct.

Reformulation in terms of the action on distinct triples

The above definition of convergence group admits a useful equivalent reformulation in terms of the action of on the "space of distinct triples" of . For a set denote , where . The set is called the "space of distinct triples" for .

Then the following equivalence is known to hold:[2]

Let be a group acting by homeomorphisms on a compact metrizable space with at least two points. Then this action is a discrete convergence action if and only if the induced action of on is properly discontinuous.

Examples

  • The action of a Kleinian group on by Möbius transformations is a convergence group action.
  • The action of a word-hyperbolic group by translations on its ideal boundary is a convergence group action.
  • The action of a relatively hyperbolic group by translations on its Bowditch boundary is a convergence group action.
  • Let be a proper geodesic Gromov-hyperbolic metric space and let be a group acting properly discontinuously by isometries on . Then the corresponding boundary action of on is a discrete convergence action (Lemma 2.11 of [2]).

Classification of elements in convergence groups

Let be a group acting by homeomorphisms on a compact metrizable space with at least three points, and let . Then it is known (Lemma 3.1 in [2] or Lemma 6.2 in [3]) that exactly one of the following occurs:

(1) The element has finite order in ; in this case is called elliptic.

(2) The element has infinite order in and the fixed set is a single point; in this case is called parabolic.

(3) The element has infinite order in and the fixed set consists of two distinct points; in this case is called loxodromic.

Moreover, for every the elements and have the same type. Also in cases (2) and (3) (where ) and the group acts properly discontinuously on . Additionally, if is loxodromic, then acts properly discontinuously and cocompactly on .

If is parabolic with a fixed point then for every one has If is loxodromic, then can be written as so that for every one has and for every one has , and these convergences are uniform on compact subsets of .

Uniform convergence groups

Summarize
Perspective

A discrete convergence action of a group on a compact metrizable space is called uniform (in which case is called a uniform convergence group) if the action of on is co-compact. Thus is a uniform convergence group if and only if its action on is both properly discontinuous and co-compact.

Conical limit points

Let act on a compact metrizable space as a discrete convergence group. A point is called a conical limit point (sometimes also called a radial limit point or a point of approximation) if there exist an infinite sequence of distinct elements and distinct points such that and for every one has .

An important result of Tukia,[4] also independently obtained by Bowditch,[2][5] states:

A discrete convergence group action of a group on a compact metrizable space is uniform if and only if every non-isolated point of is a conical limit point.

Word-hyperbolic groups and their boundaries

It was already observed by Gromov[6] that the natural action by translations of a word-hyperbolic group on its boundary is a uniform convergence action (see[2] for a formal proof). Bowditch[5] proved an important converse, thus obtaining a topological characterization of word-hyperbolic groups:

Theorem. Let act as a discrete uniform convergence group on a compact metrizable space with no isolated points. Then the group is word-hyperbolic and there exists a -equivariant homeomorphism .

Convergence actions on the circle

An isometric action of a group on the hyperbolic plane is called geometric if this action is properly discontinuous and cocompact. Every geometric action of on induces a uniform convergence action of on . An important result of Tukia (1986),[7] Gabai (1992),[8] Casson–Jungreis (1994),[9] and Freden (1995)[10] shows that the converse also holds:

Theorem. If is a group acting as a discrete uniform convergence group on then this action is topologically conjugate to an action induced by a geometric action of on by isometries.

Note that whenever acts geometrically on , the group is virtually a hyperbolic surface group, that is, contains a finite index subgroup isomorphic to the fundamental group of a closed hyperbolic surface.

Convergence actions on the 2-sphere

One of the equivalent reformulations of Cannon's conjecture, (posed by James W. Cannon,[11] although an earlier and more general conjecture, reducing to the Cannon conjecture for compact type, was given by Gaven J. Martin and Richard K. Skora [12])

These conjectures are in terms of word-hyperbolic groups with boundaries homeomorphic to , says that if is a group acting as a discrete uniform convergence group on then this action is topologically conjugate to an action induced by a geometric action of on by isometries. These conjectures still remains open.

Applications and further generalizations

  • Yaman gave a characterization of relatively hyperbolic groups in terms of convergence actions,[13] generalizing Bowditch's characterization of word-hyperbolic groups as uniform convergence groups.
  • One can consider more general versions of group actions with "convergence property" without the discreteness assumption.[14]
  • The most general version of the notion of Cannon–Thurston map, originally defined in the context of Kleinian and word-hyperbolic groups, can be defined and studied in the context of setting of convergence groups.[15]

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.