Top Qs
Timeline
Chat
Perspective

Copositive matrix

Matrix in linear algebra From Wikipedia, the free encyclopedia

Remove ads

In mathematics, specifically linear algebra, a real symmetric matrix A is copositive if

for every nonnegative vector (where the inequalities should be understood coordinate-wise). Some authors do not require A to be symmetric.[1] The collection of all copositive matrices is a proper cone;[2] it includes as a subset the collection of real positive-definite matrices.

Copositive matrices find applications in economics, operations research, and statistics.

Remove ads

Examples

Remove ads

Properties

Summarize
Perspective

It is easy to see that the sum of two copositive matrices is a copositive matrix. More generally, any conical combination of copositive matrices is copositive.

Let A be a copositive matrix. Then we have that

Every copositive matrix of order less than 5 can be expressed as the sum of a positive semidefinite matrix and a nonnegative matrix.[4] A counterexample for order 5 is given by a copositive matrix known as Horn-matrix:[5]

Remove ads

Characterization

The class of copositive matrices can be characterized using principal submatrices. One such characterization is due to Wilfred Kaplan:[6]

Several other characterizations are presented in a survey by Ikramov,[3] including:

  • Assume that all the off-diagonal entries of a real symmetric matrix A are nonpositive. Then A is copositive if and only if it is positive semidefinite.

The problem of deciding whether a matrix is copositive is co-NP-complete.[7]

References

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads