Top Qs
Timeline
Chat
Perspective
Omega-categorical theory
Mathematical logic theory with exactly one countably infinite model up to isomorphism From Wikipedia, the free encyclopedia
Remove ads
In mathematical logic, an omega-categorical theory is a theory that has exactly one countably infinite model up to isomorphism. Omega-categoricity is the special case κ = = ω of κ-categoricity, and omega-categorical theories are also referred to as ω-categorical. The notion is most important for countable first-order theories.
Remove ads
Equivalent conditions for omega-categoricity
Summarize
Perspective
Many conditions on a theory are equivalent to the property of omega-categoricity. In 1959 Erwin Engeler, Czesław Ryll-Nardzewski and Lars Svenonius, proved several independently.[1] Despite this, the literature still widely refers to the Ryll-Nardzewski theorem as a name for these conditions. The conditions included with the theorem vary between authors.[2][3]
Given a countable complete first-order theory T with infinite models, the following are equivalent:
- The theory T is omega-categorical.
- Every countable model of T has an oligomorphic automorphism group (that is, there are finitely many orbits on Mn for every n).
- Some countable model of T has an oligomorphic automorphism group.[4]
- The theory T has a model which, for every natural number n, realizes only finitely many n-types, that is, the Stone space Sn(T) is finite.
- For every natural number n, T has only finitely many n-types.
- For every natural number n, every n-type is isolated.
- For every natural number n, up to equivalence modulo T there are only finitely many formulas with n free variables, in other words, for every n, the nth Lindenbaum–Tarski algebra of T is finite.
- Every model of T is atomic.
- Every countable model of T is atomic.
- The theory T has a countable atomic and saturated model.
- The theory T has a saturated prime model.
Remove ads
Examples
The theory of any countably infinite structure which is homogeneous over a finite relational language is omega-categorical.[5] More generally, the theory of the Fraïssé limit of any uniformly locally finite Fraïssé class is omega-categorical.[6] Hence, the following theories are omega-categorical:
- The theory of dense linear orders without endpoints (Cantor's isomorphism theorem)
- The theory of the Rado graph
- The theory of infinite linear spaces over any finite field
- The theory of atomless Boolean algebras
Remove ads
Notes
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads