Cyclopentenone
Chemical compound From Wikipedia, the free encyclopedia
2-Cyclopentenone is the organic compound with the chemical formula (CH2)2(CH)2CO. 2-Cyclopentenone contains two functional groups, a ketone and an alkene. It is a colorless liquid. Its isomer, 3-cyclopentenone is less commonly encountered.
| |||
Names | |||
---|---|---|---|
Preferred IUPAC name
Cyclopent-2-en-1-one | |||
Identifiers | |||
3D model (JSmol) |
|||
ChEBI | |||
ChEMBL | |||
ChemSpider | |||
ECHA InfoCard | 100.012.012 | ||
PubChem CID |
|||
UNII | |||
CompTox Dashboard (EPA) |
|||
| |||
| |||
Properties | |||
C5H6O | |||
Molar mass | 82.102 g·mol−1 | ||
Density | 0.98 g·mL−1 | ||
Boiling point | 150 °C (302 °F; 423 K) | ||
almost insoluble in water | |||
Hazards | |||
Occupational safety and health (OHS/OSH): | |||
Main hazards |
Harmful | ||
Flash point | 42 °C (108 °F; 315 K) | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
The term cyclopentenone may also refer to a structural motif wherein the cyclopentenone moiety is a subunit of a larger molecule. Cyclopentenones are found in a large number of natural products, including jasmone, the aflatoxins, and several prostaglandins.[1]
Synthesis
2-Cyclopentenones can be synthesized in a number of ways. One of the routes involves elimination of α-bromo-cyclopentanone using lithium carbonate[2] and Claisen condensation-decarboxylation-isomerization cascades of unsaturated diesters as shown below.[3]

The acid-catalyzed dehydration of cyclopentanediols affords cyclopentenone.[4]
As a functional group, the synthesis of 2-cyclopentenones is accomplished in a variety of other ways, including the Nazarov cyclization reaction from divinyl ketones, Saegusa–Ito oxidation from cyclopentanones, ring-closing metathesis from the corresponding dienes, oxidation of the corresponding cyclic allylic alcohols, and the Pauson–Khand reaction from alkenes, alkynes, and carbon monoxide.[5]
Reactions
As an enone, 2-cyclopentenone undergoes the typical reactions of α-β unsaturated ketones, including nucleophilic conjugate addition, the Baylis–Hillman reaction, and the Michael reaction. Cyclopentenone also functions as an excellent dienophile in the Diels–Alder reaction, reacting with a wide variety of dienes. In one example, a Danishefsky-type diene is reacted with a cyclopentenone to yield a fused tricyclic system en route to the synthesis of coriolin.[6]

Occurrence
It has been isolated from pressure-cooked pork liver by simultaneous steam distillation and continuous solvent extraction.[7][1]
Related compounds
- cyclopropenone
- cyclobutenone[8]
- cyclohexenone
- cycloheptenone[9]
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.