Top Qs
Timeline
Chat
Perspective

10-demicube

From Wikipedia, the free encyclopedia

10-demicube
Remove ads

In geometry, a 10-demicube or demidekeract is a uniform 10-polytope, constructed from the 10-cube with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.

More information Demidekeract ...

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as HM10 for a ten-dimensional half measure polytope.

Coxeter named this polytope as 171 from its Coxeter diagram, with a ring on one of the 1-length branches, and Schläfli symbol or {3,37,1}.

Remove ads

Cartesian coordinates

Cartesian coordinates for the vertices of a demidekeract centered at the origin are alternate halves of the dekeract:

(±1,±1,±1,±1,±1,±1,±1,±1,±1,±1)

with an odd number of plus signs.

Images

Thumb
B10 coxeter plane
Thumb
D10 coxeter plane
(Vertices are colored by multiplicity: red, orange, yellow, green = 1,2,4,8)

A regular dodecahedron can be embedded as a regular skew polyhedron within the vertices in the 10-demicube, possessing the same symmetries as the 3-dimensional dodecahedron.[1]

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads