Top Qs
Timeline
Chat
Perspective

Dickman function

Mathematical function From Wikipedia, the free encyclopedia

Dickman function
Remove ads

In analytic number theory, the Dickman function or Dickman–de Bruijn function ρ is a special function used to estimate the proportion of smooth numbers up to a given bound. It was first studied by actuary Karl Dickman, who defined it in his only mathematical publication,[1] which is not easily available,[2] and later studied by the Dutch mathematician Nicolaas Govert de Bruijn.[3][4]

Thumb
The Dickman–de Bruijn function ρ(u) plotted on a logarithmic scale. The horizontal axis is the argument u, and the vertical axis is the value of the function. The graph nearly makes a downward line on the logarithmic scale, demonstrating that the logarithm of the function is quasilinear.
Remove ads

Definition

The Dickman–de Bruijn function is a continuous function that satisfies the delay differential equation

with initial conditions for 0  u  1.

Remove ads

Properties

Summarize
Perspective

Dickman proved that, when is fixed, we have

where is the number of y-smooth (or y-friable) integers below x.

Ramaswami later gave a rigorous proof that for fixed a, was asymptotic to , with the error bound

in big O notation.[5]

Remove ads

Applications

Thumb
The Dickman–de Bruijn used to calculate the probability that the largest and 2nd largest factor of x is less than x^a

The main purpose of the Dickman–de Bruijn function is to estimate the frequency of smooth numbers at a given size. This can be used to optimize various number-theoretical algorithms such as P–1 factoring and can be useful of its own right.

It can be shown that[6]

which is related to the estimate below.

The Golomb–Dickman constant has an alternate definition in terms of the Dickman–de Bruijn function.

Estimation

Summarize
Perspective

A first approximation might be A better estimate is[7]

where Ei is the exponential integral and ξ is the positive root of

A simple upper bound is

More information , ...
Remove ads

Computation

Summarize
Perspective

For each interval [n  1, n] with n an integer, there is an analytic function such that . For 0  u  1, . For 1  u  2, . For 2  u  3,

with Li2 the dilogarithm. Other can be calculated using infinite series.[8]

An alternate method is computing lower and upper bounds with the trapezoidal rule;[7] a mesh of progressively finer sizes allows for arbitrary accuracy. For high precision calculations (hundreds of digits), a recursive series expansion about the midpoints of the intervals is superior.[9]

Remove ads

Extension

Friedlander defines a two-dimensional analog of .[10] This function is used to estimate a function similar to de Bruijn's, but counting the number of y-smooth integers with at most one prime factor greater than z. Then

Remove ads

See also

References

Loading content...

Further reading

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads