Top Qs
Timeline
Chat
Perspective
Dogbone space
Quotient space in geometric topology From Wikipedia, the free encyclopedia
Remove ads
In geometric topology, the dogbone space, constructed by R. H. Bing,[1] is a quotient space of three-dimensional Euclidean space such that all inverse images of points are points or tame arcs, yet it is not homeomorphic to . The name "dogbone space" refers to a fanciful resemblance between some of the diagrams of genus 2 surfaces in Bing's paper and a dog bone. Bing showed that the product of the dogbone space with is homeomorphic to .[2]

Although the dogbone space is not a manifold, it is a generalized homological manifold and a homotopy manifold.
Remove ads
See also
- List of topologies
- Whitehead manifold, a contractible 3-manifold not homeomorphic to .
References
Sources
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads
