Top Qs
Timeline
Chat
Perspective

Engel identity

From Wikipedia, the free encyclopedia

Remove ads

The Engel identity, named after Friedrich Engel, is a mathematical equation that is satisfied by all elements of a Lie ring, in the case of an Engel Lie ring, or by all the elements of a group, in the case of an Engel group. The Engel identity is the defining condition of an Engel group.

Formal definition

A Lie ring is defined as a nonassociative ring with multiplication that is anticommutative and satisfies the Jacobi identity with respect to the Lie bracket , defined for all elements in the ring . The Lie ring is defined to be an n-Engel Lie ring if and only if

  • for all in , the n-Engel identity

(n copies of ), is satisfied.[1]

In the case of a group , in the preceding definition, use the definition [x,y] = x1y1xy and replace by , where is the identity element of the group .[2]

Remove ads

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads