Epsilon (rocket)

JAXA small-lift rocket family From Wikipedia, the free encyclopedia

Epsilon (rocket)

The Epsilon Launch Vehicle, or Epsilon rocket (イプシロンロケット, Ipushiron roketto) (formerly Advanced Solid Rocket), is a Japanese solid-fuel rocket designed to launch scientific satellites. It is a follow-on project to the larger and more expensive M-V rocket which was retired in 2006. The Japan Aerospace Exploration Agency (JAXA) began developing the Epsilon in 2007. It is capable of placing a 590 kg payload into Sun-synchronous orbit.[7]

Quick Facts Function, Country of origin ...
Epsilon
Thumb
Epsilon flight F2 before launch in December 2016
FunctionLaunch vehicle
Country of originJapan
Cost per launchUS$39 million[1]
Size
Height24.4 m (Demonstration Flight)
26 m (Enhanced)
27.2 m (Epsilon S)[2]
Diameter2.5 m
Mass91 t (Demonstration Flight)
95.4 t (Enhanced)
~100 t (Epsilon S)
Stages3–4
Capacity
Payload to 250 x 500 km orbit
Standard 3 stages configuration
Mass1,500 kg (3,300 lb)
Payload to 500 km orbit
Optional 4 stages configuration
Mass700 kg (1,500 lb)
Payload to 500 km orbit
Epsilon S
Mass1,400 kg (3,100 lb)[2]
Payload to 500 km SSO
Optional 4 stages configuration
Mass590 kg (1,300 lb)
Payload to 700 km SSO
Epsilon S
Mass600 kg (1,300 lb)[2]
Launch history
StatusActive
Launch sitesUchinoura
Total launches6
Success(es)5
Failure(s)1
Partial failure(s)0
First flight14 September 2013
Last flight12 October 2022
First stage (Demonstration Flight/Enhanced) – SRB-A3
Powered by1 solid
Maximum thrust2,271 kN (511,000 lbf)[3]
Specific impulse284 s (2.79 km/s)
Burn time116 seconds
First stage (Epsilon S) – SRB-3
Powered by1 solid
Maximum thrust2,158 kN (485,000 lbf)[4]
Specific impulse283.6 s (2.781 km/s)
Burn time105 seconds
Second stage (Demonstration Flight) – M-34c
Powered by1 solid
Maximum thrust371.5 kN (83,500 lbf)[3]
Specific impulse300 s (2.9 km/s)
Burn time105 seconds
Second stage (Enhanced) – M-35
Powered by1 solid
Maximum thrust445 kN (100,000 lbf)[3]
Specific impulse295 s (2.89 km/s)[5]
Burn time129 seconds [5]
Second stage (Epsilon S) – E-21[2]
Powered by1 solid
Maximum thrust610 kN (140,000 lbf)[2]
Specific impulse294.5 s (2.888 km/s)[2]
Burn time120 seconds[2]
Third stage (Demonstration Flight) – KM-V2b
Powered by1 solid
Maximum thrust99.8 kN (22,400 lbf)[3]
Specific impulse301 s (2.95 km/s)
Burn time90 seconds
Third stage (Enhanced) – KM-V2c
Powered by1 solid
Maximum thrust99.6 kN (22,400 lbf)[3]
Specific impulse299 s (2.93 km/s)[5]
Burn time91 seconds[5]
Third stage (Epsilon S) – E-31[6]
Powered by1 solid
Maximum thrust135 kN (30,000 lbf)[6]
Specific impulse~295 s (2.89 km/s)
Burn time108 seconds[6]
Fourth stage (Optional) – CLPS
Maximum thrust40.8 N (9.2 lbf)
Specific impulse215 s (2.11 km/s)[3]
Burn time1100 seconds (maximum)
PropellantHydrazine
Close

Vehicle description

Summarize
Perspective

The development aim is to reduce the US$70 million launch cost of an M-V;[8] the Epsilon costs US$38 million per launch.[9] Development expenditures by JAXA exceeded US$200 million.[9]

To reduce the cost per launch the Epsilon uses the existing SRB-A3, a solid rocket booster on the H-IIA rocket, as its first stage. Existing M-V upper stages will be used for the second and third stages, with an optional fourth stage available for launches to higher orbits. The J-I rocket, which was developed during the 1990s but abandoned after just one launch, used a similar design concept, with an H-II booster and Mu-3S-II upper stages.[10]

The Epsilon is expected to have a shorter launch preparation time than its predecessors;[11][12][13] a function called "mobile launch control" greatly shortens the launch preparation time, and needs only eight people at the launch site,[14] compared with 150 people for earlier systems.[15]

The rocket has a mass of 91 t (90 long tons; 100 short tons) and is 24.4 m (80 ft) tall and 2.5 m (8 ft 2 in) in diameter.[16][17]

Enhanced version

After the successful launch of the Epsilon first flight (demonstration flight), the improvement plan was decided to handle the planned payloads (ERG and ASNARO-2).[18]

Requirements for the improvement:[18]

  • Apogee ≧ 28700 km (summer launch), ≧ 31100 km (winter launch) of a 365 kg payload
  • Sun-synchronous orbit (500 km) of a ≧ 590 kg payload
  • Larger fairing

Planned characteristics:[18]

  • Height: 26.0 m
  • Diameter: 2.5 m
  • Mass: 95.1 t (Standard) / 95.4 t (optional 4th stage (post-boost stage))

Catalog performance according to IHI Aerospace:[19]

  • Low Earth orbit 250 km × 500 km for 1.5 t
  • Sun-synchronous orbit 500 km × 500 km for 0.6 t

Final characteristics:[7][20]

  • Height: 26.0 m
  • Diameter: 2.6 m (max), 2.5 m (fairing)
  • Mass: 95.4 t (standard) / 95.7 t (optional)

Epsilon S

Epsilon's first stage has been the modified SRB-A3 which is the solid-rocket booster of H-IIA. As the H-IIA is to be decommissioned and to be replaced by H3, Epsilon is to be replaced by a new version, named Epsilon S.[21]

Major changes of Epsilon S from Epsilon are:[21]

  • The first stage is based on SRB-3, the strap-on solid-rocket booster of H3.
  • The third stage is a new design, whereas Epsilon's third stage was based on the M-V's third stage. New third stage is three-axis stabilized using Post-Boost Stage (PBS), whereas Epsilon's third stage was spin-stabilized. Also the third stage is outside the fairing, whereas Epsilon's fairing covered the third stage.
  • The Epsilon S Post-Boost Stage is mandatory, whereas Epsilon's PBS was optional.

Planned performance of Epsilon S is:[21]

  • Sun-synchronous orbit (350 – 700 km): ≧ 600 kg
  • Low Earth orbit (500 km): ≧ 1400 kg

The first launch of Epsilon S is planned in 2023.[21]

On July 14, 2023, the solid-fuelled second stage of Epsilon S failed during a test firing.[22] The root cause was determined to be the "melting and scattering of a metal part from the ignition device", which damaged the propellant and insulation.[23] Corrective measures were implemented and the stage was tested again on November 26, 2024; however, the second test also resulted in a failure 49 seconds after ignition.[24]

Launch statistics

Launch outcomes

1
2013
'14
'15
'16
'17
'18
'19
2020
'21
'22
  •   Failure
  •   Partial failure
  •   Success
  •   Planned

Launch history

Summarize
Perspective

Epsilon launch vehicles are launched from a pad at the Uchinoura Space Center previously used by Mu launch vehicles. The maiden flight, carrying the SPRINT-A scientific satellite, lifted off at 05:00 UTC (14:00 JST) on 14 September 2013. The launch was conducted at a cost of US$38 million.[25]

On 27 August 2013, the first planned launch of the launch vehicle had to be aborted 19 seconds before liftoff because of a botched data transmission. A ground-based computer had tried to receive data from the launch vehicle 0.07 seconds before the information was actually transmitted.[26]

The initial version of Epsilon has a payload capacity to low Earth orbit of up to 500 kilograms,[27][28] with the operational version expected to be able to place 1,200 kg (2,600 lb) into a 250 by 500 km (160 by 310 mi) orbit, or 700 kg (1,500 lb) to a circular orbit at 500 km (310 mi) with the aid of a hydrazine fueled stage.[9]

Thumb
Mockup of Epsilon
More information Flight No., Date / time (UTC) ...
Flight No. Date / time (UTC) Rocket,
Configuration
Launch site Payload Payload mass Orbit Customer Launch
outcome
1 14 September 2013
05:00:00
Epsilon 4 Stages [29] Uchinoura Space Center SPRINT-A (HISAKI) 340 kg LEO JAXA Success
Demonstration Flight
2 20 December 2016
11:00:00 [30]
Epsilon 3 Stages Uchinoura Space Center ERG (ARASE) 350 kg [31] Geocentric JAXA Success
3 17 January 2018
21:06:11 [32]
Epsilon 4 Stages [33] Uchinoura Space Center ASNARO-2 570 kg SSO Japan Space Systems Success
4 18 January 2019
00:50:20 [34]
Epsilon 4 Stages Uchinoura Space Center RAPIS-1
MicroDragon
RISESAT
ALE-1
OrigamiSat-1
AOBA-VELOX-IV
NEXUS
200 kg SSO JAXA Success[30]
Innovative Satellite Technology Demonstration-1; component demonstration and technology validation.[35]
5 9 November 2021
00:55:16 [36][37]
Epsilon PBS Uchinoura Space Center RAISE-2
HIBARI
Z-Sat
DRUMS
TeikyoSat-4
ASTERISC
ARICA
NanoDragon
KOSEN-1
110 kg SSO JAXA Success
Innovative Satellite Technology Demonstration-2.
6 12 October 2022
00:50:00 [38]
Epsilon 4 Stages Uchinoura Space Center RAISE-3
QPS-SAR 3
QPS-SAR 4
MAGNARO
MITSUBA
KOSEN-2
WASEDA-SAT-ZERO
FSI-SAT
110 kg SSO JAXA, iQPS Failure
RAISE-3 and the six CubeSats were part of Innovative Satellite Technology Demonstration-3. QPS-SAR 3/4 were Epsilon's first commercial satellites launch contracts. Vehicle was destroyed by flight termination system shortly after second stage cutoff due to an attitude control fault.[38][39] A report regarding the cause has been published and is available for viewing, although it is in Japanese.[40]
Close

Planned launches

More information Date / time (UTC), Rocket, Configuration ...
Close

Sources: Japanese Cabinet[48]

Internet data leak

In November 2012, JAXA reported that there had been a possible leak of rocket data due to a computer virus. JAXA had previously been a victim of cyber-attacks, possibly for espionage purposes.[49] Solid-fuel rocket data potentially has military value,[49] and Epsilon is considered as potentially adaptable to an intercontinental ballistic missile.[50] The Japan Aerospace Exploration Agency removed the infected computer from its network, and said its M-V rocket and H-IIA and H-IIB rockets may have been compromised.[51]

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.