Top Qs
Timeline
Chat
Perspective
Equivariant algebraic K-theory
From Wikipedia, the free encyclopedia
Remove ads
In mathematics, the equivariant algebraic K-theory is an algebraic K-theory associated to the category of equivariant coherent sheaves on an algebraic scheme X with action of a linear algebraic group G, via Quillen's Q-construction; thus, by definition,
![]() | This article may be too technical for most readers to understand. (April 2015) |
In particular, is the Grothendieck group of . The theory was developed by R. W. Thomason in 1980s.[1] Specifically, he proved equivariant analogs of fundamental theorems such as the localization theorem.
Equivalently, may be defined as the of the category of coherent sheaves on the quotient stack .[2][3] (Hence, the equivariant K-theory is a specific case of the K-theory of a stack.)
A version of the Lefschetz fixed-point theorem holds in the setting of equivariant (algebraic) K-theory.[4]
Remove ads
Fundamental theorems
Let X be an equivariant algebraic scheme.
Localization theorem—Given a closed immersion of equivariant algebraic schemes and an open immersion , there is a long exact sequence of groups
Remove ads
Examples
One of the fundamental examples of equivariant K-theory groups are the equivariant K-groups of -equivariant coherent sheaves on a points, so . Since is equivalent to the category of finite-dimensional representations of . Then, the Grothendieck group of , denoted is .[5]
Torus ring
Given an algebraic torus a finite-dimensional representation is given by a direct sum of -dimensional -modules called the weights of .[6] There is an explicit isomorphism between and given by sending to its associated character.[7]
Remove ads
See also
- Topological K-theory, the topological equivariant K-theory
References
Further reading
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads