Top Qs
Timeline
Chat
Perspective

Extended negative binomial distribution

From Wikipedia, the free encyclopedia

Remove ads

In probability and statistics the extended negative binomial distribution is a discrete probability distribution extending the negative binomial distribution. It is a truncated version of the negative binomial distribution[1] for which estimation methods have been studied.[2]

In the context of actuarial science, the distribution appeared in its general form in a paper by K. Hess, A. Liewald and K.D. Schmidt[3] when they characterized all distributions for which the extended Panjer recursion works. For the case m = 1, the distribution was already discussed by Willmot[4] and put into a parametrized family with the logarithmic distribution and the negative binomial distribution by H.U. Gerber.[5]

Remove ads

Probability mass function

Summarize
Perspective

For a natural number m ≥ 1 and real parameters p, r with 0 < p ≤ 1 and m < r < –m + 1, the probability mass function of the ExtNegBin(m,r,p) distribution is given by

and

where

is the (generalized) binomial coefficient and Γ denotes the gamma function.

Remove ads

Probability generating function

Summarize
Perspective

Using that f(.;m,r,ps) for s(0,1] is also a probability mass function, it follows that the probability generating function is given by

For the important case m = 1, hence r(–1,0), this simplifies to

Remove ads

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads