Feynman slash notation

Notation for contractions with gamma matrices From Wikipedia, the free encyclopedia

In the study of Dirac fields in quantum field theory, Richard Feynman introduced the convenient Feynman slash notation (less commonly known as the Dirac slash notation[1]). If A is a covariant vector (i.e., a 1-form),

where γ are the gamma matrices. Using the Einstein summation notation, the expression is simply

.

Identities

Summarize
Perspective

Using the anticommutators of the gamma matrices, one can show that for any and ,

where is the identity matrix in four dimensions.

In particular,

Further identities can be read off directly from the gamma matrix identities by replacing the metric tensor with inner products. For example,

where:

  • is the Levi-Civita symbol
  • is the Minkowski metric
  • is a scalar.

With four-momentum

Summarize
Perspective

This section uses the (+ − − −) metric signature. Often, when using the Dirac equation and solving for cross sections, one finds the slash notation used on four-momentum: using the Dirac basis for the gamma matrices,

as well as the definition of contravariant four-momentum in natural units,

we see explicitly that

Similar results hold in other bases, such as the Weyl basis.

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.