Top Qs
Timeline
Chat
Perspective
Fiber bundle construction theorem
Constructs a fiber bundle from a base space, fiber and a set of transition functions From Wikipedia, the free encyclopedia
Remove ads
In mathematics, the fiber bundle construction theorem is a theorem which constructs a fiber bundles with a structure group from a given base space, fiber, group, and a suitable set of transition functions. The theorem also gives conditions under which two such bundles are isomorphic.

The theorem is used in the associated bundle construction, where one starts with a given bundle and changes just the fiber, while keeping all other data the same.
Remove ads
Formal statement
Summarize
Perspective
Existence
Let X and F be topological spaces and let G be a topological group with a continuous left action on F. Given an open cover {Ui} of X and a set of continuous functions
defined on each nonempty overlap, such that the cocycle condition
holds, there exists a fiber bundle E → X with fiber F and structure group G that is trivializable over {Ui} with transition functions tij.
Isomorphism
Let E′ be another fiber bundle with the same base space, fiber, structure group, and trivializing neighborhoods, but transition functions t′ij. If the action of G on F is faithful, then E′ and E are isomorphic if and only if there exist functions
such that
i.e. a gauge transformation on transition data.
In particular, given a base, fiber, structure group, group action on the fiber, trivializing neighborhoods, and a set of transition functions, if the action is faithful, then any two fiber bundles constructed are isomorphic. To see it, use the "if" direction of the isomorphism theorem with , where is the identity element of . In other words, the construction is unique up to isomorphism.
Smooth category
The above pair of theorems hold in the topological category. A similar pair of theorems hold in the smooth category, where X and Y are smooth manifolds, G is a Lie group with a smooth left action on Y and the maps tij are all smooth.
Remove ads
Construction
Summarize
Perspective
Existence is proven constructively by the standard coequalizer construction in category theory.
Take the disjoint union of the product spaces
Define the equivalence relation
Take the quotient , with the projection map The local trivializations are
Remove ads
Associated bundle
Let E → X a fiber bundle with fiber F and structure group G, and let F′ be another left G-space. One can form an associated bundle E′ → X with a fiber F′ and structure group G by taking any local trivialization of E and replacing F by F′ in the construction theorem. If one takes F′ to be G with the action of left multiplication then one obtains the associated principal bundle.
References
- Sharpe, R. W. (1997). Differential Geometry: Cartan's Generalization of Klein's Erlangen Program. New York: Springer. ISBN 0-387-94732-9.
- Steenrod, Norman (1951). The Topology of Fibre Bundles. Princeton: Princeton University Press. ISBN 0-691-00548-6.
{{cite book}}: ISBN / Date incompatibility (help) See Part I, §2.10 and §3.
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads
