Top Qs
Timeline
Chat
Perspective

Flory–Schulz distribution

From Wikipedia, the free encyclopedia

Flory–Schulz distribution
Remove ads

The Flory–Schulz distribution is a discrete probability distribution named after Paul Flory and Günter Victor Schulz that describes the relative ratios of polymers of different length that occur in an ideal step-growth polymerization process. The probability mass function (pmf) for the mass fraction of chains of length is:

Quick Facts Parameters, Support ...
Remove ads

In this equation, k is the number of monomers in the chain,[1] and 0<a<1 is an empirically determined constant related to the fraction of unreacted monomer remaining.[2]

The form of this distribution implies is that shorter polymers are favored over longer ones — the chain length is geometrically distributed. Apart from polymerization processes, this distribution is also relevant to the Fischer–Tropsch process that is conceptually related, where it is known as Anderson-Schulz-Flory (ASF) distribution, in that lighter hydrocarbons are converted to heavier hydrocarbons that are desirable as a liquid fuel.

The pmf of this distribution is a solution of the following equation:

Remove ads

References

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads