Top Qs
Timeline
Chat
Perspective

Fractional dominating set

Generalization of dominating sets using fractional weights From Wikipedia, the free encyclopedia

Remove ads

In graph theory, a fractional dominating set is a generalization of the dominating set concept that allows vertices to be assigned fractional weights between 0 and 1, rather than binary membership. This relaxation transforms the domination problem into a linear programming problem, often yielding more precise bounds and enabling polynomial-time computation.

Definition

Let be a graph. A fractional dominating function is a function such that for every vertex , the sum of over the closed neighborhood is at least 1:[1][2]

The fractional domination number is the minimum total weight of a fractional dominating function:

Remove ads

Properties

Summarize
Perspective

For any graph , the fractional domination number satisfies:[1]

where is the domination number, is the upper domination number, and is the upper fractional domination number.

The fractional domination number can be computed as the solution to a linear program by utilizing strong duality.[2]

For any graph with vertices, minimum degree , and maximum degree :[2]

Remove ads

Formulas for specific graph families

For a k-regular graph with vertices and :[1][3]

For the complete bipartite graph :[2]

Several graph classes have :[2]

For the strong product of graphs :[2]

For the Cartesian product of graphs (Vizing's conjecture, fractional version):[2]

Remove ads

Computational complexity

Since the fractional domination number can be formulated as a linear program, it can be computed in polynomial time, unlike the standard domination number which is NP-hard to compute.[2]

Variants

Summarize
Perspective

A fractional distance k-dominating function generalizes the concept by requiring that for every vertex , the sum over its distance- neighborhood (vertices at distance at most from ) is at least one. The corresponding fractional distance k-domination number is denoted . [3]

For -regular graphs and specific values of , exact formulas exist. For instance, for cycles :[3]

An efficient fractional dominating function satisfies

for all vertices . Not all graphs admit efficient fractional dominating functions.[2]

A fractional total dominating function requires that for every vertex , the sum over its open neighborhood (excluding itself) is at least one. The fractional total domination number is denoted .[2]

The upper fractional domination number is the maximum weight among all minimal fractional dominating functions.[2]

Remove ads

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads