Top Qs
Timeline
Chat
Perspective
Fundamental theorem of Hilbert spaces
From Wikipedia, the free encyclopedia
Remove ads
In mathematics, specifically in functional analysis and Hilbert space theory, the fundamental theorem of Hilbert spaces gives a necessary and sufficient condition for a Hausdorff pre-Hilbert space to be a Hilbert space in terms of the canonical isometry of a pre-Hilbert space into its anti-dual.
Preliminaries
Summarize
Perspective
Antilinear functionals and the anti-dual
Suppose that H is a topological vector space (TVS). A function f : H → is called semilinear or antilinear[1] if for all x, y ∈ H and all scalars c ,
- Additive: f (x + y) = f (x) + f (y);
- Conjugate homogeneous: f (c x) = c f (x).
The vector space of all continuous antilinear functions on H is called the anti-dual space or complex conjugate dual space of H and is denoted by (in contrast, the continuous dual space of H is denoted by ), which we make into a normed space by endowing it with the canonical norm (defined in the same way as the canonical norm on the continuous dual space of H).[1]
Pre-Hilbert spaces and sesquilinear forms
A sesquilinear form is a map B : H × H → such that for all y ∈ H, the map defined by x ↦ B(x, y) is linear, and for all x ∈ H, the map defined by y ↦ B(x, y) is antilinear.[1] Note that in Physics, the convention is that a sesquilinear form is linear in its second coordinate and antilinear in its first coordinate.
A sesquilinear form on H is called positive definite if B(x, x) > 0 for all non-0 x ∈ H; it is called non-negative if B(x, x) ≥ 0 for all x ∈ H.[1] A sesquilinear form B on H is called a Hermitian form if in addition it has the property that for all x, y ∈ H.[1]
Pre-Hilbert and Hilbert spaces
A pre-Hilbert space is a pair consisting of a vector space H and a non-negative sesquilinear form B on H; if in addition this sesquilinear form B is positive definite then (H, B) is called a Hausdorff pre-Hilbert space.[1] If B is non-negative then it induces a canonical seminorm on H, denoted by , defined by x ↦ B(x, x)1/2, where if B is also positive definite then this map is a norm.[1] This canonical semi-norm makes every pre-Hilbert space into a seminormed space and every Hausdorff pre-Hilbert space into a normed space. The sesquilinear form B : H × H → is separately uniformly continuous in each of its two arguments and hence can be extended to a separately continuous sesquilinear form on the completion of H; if H is Hausdorff then this completion is a Hilbert space.[1] A Hausdorff pre-Hilbert space that is complete is called a Hilbert space.
Canonical map into the anti-dual
Suppose (H, B) is a pre-Hilbert space. If h ∈ H, we define the canonical maps:
- B(h, •) : H → where y ↦ B(h, y), and
- B(•, h) : H → where x ↦ B(x, h)
The canonical map[1] from H into its anti-dual is the map
- defined by x ↦ B(x, •).
If (H, B) is a pre-Hilbert space then this canonical map is linear and continuous; this map is an isometry onto a vector subspace of the anti-dual if and only if (H, B) is a Hausdorff pre-Hilbert.[1]
There is of course a canonical antilinear surjective isometry that sends a continuous linear functional f on H to the continuous antilinear functional denoted by f and defined by x ↦ f (x).
Remove ads
Fundamental theorem
- Fundamental theorem of Hilbert spaces:[1] Suppose that (H, B) is a Hausdorff pre-Hilbert space where B : H × H → is a sesquilinear form that is linear in its first coordinate and antilinear in its second coordinate. Then the canonical linear mapping from H into the anti-dual space of H is surjective if and only if (H, B) is a Hilbert space, in which case the canonical map is a surjective isometry of H onto its anti-dual.
Remove ads
See also
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads