Top Qs
Timeline
Chat
Perspective

Gauss–Markov process

From Wikipedia, the free encyclopedia

Remove ads

Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes.[1][2] A stationary Gauss–Markov process is unique[citation needed] up to rescaling; such a process is also known as an Ornstein–Uhlenbeck process.

Gauss–Markov processes obey Langevin equations.[3]

Remove ads

Basic properties

Every Gauss–Markov process X(t) possesses the three following properties:[4]

  1. If h(t) is a non-zero scalar function of t, then Z(t) = h(t)X(t) is also a Gauss–Markov process
  2. If f(t) is a non-decreasing scalar function of t, then Z(t) = X(f(t)) is also a Gauss–Markov process
  3. If the process is non-degenerate and mean-square continuous, then there exists a non-zero scalar function h(t) and a strictly increasing scalar function f(t) such that X(t) = h(t)W(f(t)), where W(t) is the standard Wiener process.

Property (3) means that every non-degenerate mean-square continuous Gauss–Markov process can be synthesized from the standard Wiener process (SWP).

Remove ads

Other properties

Summarize
Perspective

A stationary Gauss–Markov process with variance and time constant has the following properties.

  • Exponential autocorrelation:
  • A power spectral density (PSD) function that has the same shape as the Cauchy distribution: (Note that the Cauchy distribution and this spectrum differ by scale factors.)
  • The above yields the following spectral factorization: which is important in Wiener filtering and other areas.

There are also some trivial exceptions to all of the above.[clarification needed]

Remove ads

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads