Top Qs
Timeline
Chat
Perspective

General Leibniz rule

Generalization of the product rule in calculus From Wikipedia, the free encyclopedia

Remove ads

In calculus, the general Leibniz rule,[1] named after Gottfried Wilhelm Leibniz, generalizes the product rule for the derivative of the product of two functions (which is also known as "Leibniz's rule"). It states that if and are n-times differentiable functions, then the product is also n-times differentiable and its n-th derivative is given by where is the binomial coefficient and denotes the jth derivative of f (and in particular ).

The rule can be proven by using the product rule and mathematical induction.

Remove ads

Second derivative

If, for example, n = 2, the rule gives an expression for the second derivative of a product of two functions:

Remove ads

More than two factors

The formula can be generalized to the product of m differentiable functions f1,...,fm. where the sum extends over all m-tuples (k1,...,km) of non-negative integers with and are the multinomial coefficients. This is akin to the multinomial formula from algebra.

Remove ads

Proof

The proof of the general Leibniz rule[2]:68–69 proceeds by induction. Let and be -times differentiable functions. The base case when claims that: which is the usual product rule and is known to be true. Next, assume that the statement holds for a fixed that is, that

Then, And so the statement holds for , and the proof is complete.

Remove ads

Relationship to the binomial theorem

The Leibniz rule bears a strong resemblance to the binomial theorem, and in fact the binomial theorem can be proven directly from the Leibniz rule by taking and which gives

and then dividing both sides by [2]:69

Remove ads

Multivariable calculus

Summarize
Perspective

With the multi-index notation for partial derivatives of functions of several variables, the Leibniz rule states more generally:

This formula can be used to derive a formula that computes the symbol of the composition of differential operators. In fact, let P and Q be differential operators (with coefficients that are differentiable sufficiently many times) and Since R is also a differential operator, the symbol of R is given by:

A direct computation now gives:

This formula is usually known as the Leibniz formula. It is used to define the composition in the space of symbols, thereby inducing the ring structure.

Remove ads

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads