Generalized Clifford algebra

From Wikipedia, the free encyclopedia

In mathematics, a generalized Clifford algebra (GCA) is a unital associative algebra that generalizes the Clifford algebra, and goes back to the work of Hermann Weyl,[1] who utilized and formalized these clock-and-shift operators introduced by J. J. Sylvester (1882),[2] and organized by Cartan (1898)[3] and Schwinger.[4]

Clock and shift matrices find routine applications in numerous areas of mathematical physics, providing the cornerstone of quantum mechanical dynamics in finite-dimensional vector spaces.[5][6][7] The concept of a spinor can further be linked to these algebras.[6]

The term generalized Clifford algebra can also refer to associative algebras that are constructed using forms of higher degree instead of quadratic forms.[8][9][10][11]

Definition and properties

Summarize
Perspective

Abstract definition

The n-dimensional generalized Clifford algebra is defined as an associative algebra over a field F, generated by[12]

and

j,k,,m = 1, . . . ,n.

Moreover, in any irreducible matrix representation, relevant for physical applications, it is required that

j,k = 1, . . . ,n,   and gcd. The field F is usually taken to be the complex numbers C.

More specific definition

In the more common cases of GCA,[6] the n-dimensional generalized Clifford algebra of order p has the property ωkj = ω,   for all j,k, and . It follows that

and

for all j,k, = 1, . . . ,n, and

is the pth root of 1.

There exist several definitions of a Generalized Clifford Algebra in the literature.[13]

Clifford algebra

In the (orthogonal) Clifford algebra, the elements follow an anticommutation rule, with ω = −1, and p = 2.

Matrix representation

Summarize
Perspective

The Clock and Shift matrices can be represented[14] by n×n matrices in Schwinger's canonical notation as

.

Notably, Vn = 1, VU = ωUV (the Weyl braiding relations), and W−1VW = U (the discrete Fourier transform). With e1 = V , e2 = VU, and e3 = U, one has three basis elements which, together with ω, fulfil the above conditions of the Generalized Clifford Algebra (GCA).

These matrices, V and U, normally referred to as "shift and clock matrices", were introduced by J. J. Sylvester in the 1880s. (Note that the matrices V are cyclic permutation matrices that perform a circular shift; they are not to be confused with upper and lower shift matrices which have ones only either above or below the diagonal, respectively).

Specific examples

Case n = p = 2

In this case, we have ω = −1, and

thus

which constitute the Pauli matrices.

Case n = p = 4

In this case we have ω = i, and

and e1, e2, e3 may be determined accordingly.

See also

References

Further reading

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.