Groupoid algebra
From Wikipedia, the free encyclopedia
In mathematics, the concept of groupoid algebra generalizes the notion of group algebra.[1]
Definition
Given a groupoid (in the sense of a category with all morphisms invertible) and a field , it is possible to define the groupoid algebra as the algebra over formed by the vector space having the elements of (the morphisms of) as generators and having the multiplication of these elements defined by , whenever this product is defined, and otherwise. The product is then extended by linearity.[2]
Examples
Some examples of groupoid algebras are the following:[3]
- Group rings
- Matrix algebras
- Algebras of functions
Properties
- When a groupoid has a finite number of objects and a finite number of morphisms, the groupoid algebra is a direct sum of tensor products of group algebras and matrix algebras.[4]
See also
Notes
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.